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Compressible model of the free boundary value problem

∂tρ+ div(ρu) = 0 in Ωt, t ∈ (0, T ),

ρ(∂tu + u · ∇)u− divT = −gρe3, in Ωt, t ∈ (0, T ),

where −ge3 is the gravity,

T = T (ρ,u) = −pI + Φ, Φ = λdivuI + µS, Sij = ∂xiuj + ∂xjui,

for the isotheral gas p = kρ, k > 0, Ωt is a periodic basin with free upper surface with

Ω = {(x1, x2, x3) : x∗ = (x1, x2) ∈ T2, 0 < x3 < ζ(x∗, t)}.

Let Σ = T2 × {0} be the bottom of the domain, and Γt = {(x∗, ζ(x∗, t)) : x∗ ∈ T2} be
the free upper surface.

Kinematic conditions, that is,

u|Σ = 0(no slip bpundary condition due to the viscosity),

∂tζ = u3 − u1∂x1ζ − u2∂x2ζ(=
√

1 + |∇x∗ζ|2u · n) on Γt.

By the Capillary theory the shape of the free surface is formed by the difference of the
stress tensors from the inside of the fluid and the outside of the fluid, that is,

T(u, p)− (−p0n) = α∆Γt(t)x,

where p0 is the atmospheric pressure, α > 0 is the surface tension, ∆Γt(t)x is the double
mean curvature of the surface Γt,

∆Γt(t) = g−
1
2

2∑
γ,δ=1

∂

∂sγ
(g

1
2 gγδ

∂

∂sδ
), g = det(gγδ),

gγδ =
∂x

∂sγ
· ∂x

∂sδ
, (gγδ) is the inverse matrix to (gγδ),

if Γt is determined by x = x(s1, s2, t), (s1, s2) ∈ T2,
When Γt = {(x∗, ζ(x∗, t)) : x∗ ∈ T2}, ∆Γt(t)x = Hn, where

H =
2∑
i=1

∂xi(
∂xiζ√

1 + |∇x∗ζ|2
) = ∇x∗ · (

∇x∗ζ√
1 + |∇x∗ζ|2

).

Here u, ρ, ζ are unknown.
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Classical result for the local in time existence

Theorem 0.1 (In anisotropic Sobolev-Slobodetskii space). Let Γ0 ∈ W
5
2

+l

2 ,∈ (1
2
, 1), ρ0 ∈

W l+1
2 , ρ0 ≥ R0 > 0, α > 0, u0 ∈ W l+1

2 (Ω), and let the following compatibility condition

holds:

T (u0, p(ρ0))n0 − (−p0n0) = αH(ζ0)n0 on Γ0.

Then there is a unique solution u ∈ W
2+l,1+ l

2
2 on finite time interval (0, T0) whose

magnitude T depends on the data.
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Lagrangian coordinates representation:

Let us consider a particle trajectory X(ξ, t) : Ω0 → Ωt at the point ξ:
d

dt
X = u(X, t), X(ξ, 0) = ξ.

Denote û = u(X(ξ, t), t), ρ̂ = ρ(X(ξ, t), t), ζ̂ = ζ(X(ξ, t), t), p̂ = p(ρ̂).
Then X = ξ +

∫ t
0

û(ξ, s)ds := Xû.

Denote ∂j = ∂
∂ξj

, bjk = ∂xk
∂ξj

:= bjk(û). Denote aij =
∂ξj
∂xi
,, then

aijbjk = δik.

Denote

divvw = akl(v)∂lwk, ∇v = aij(v)∂j, Dv(w) = (aim(v)∂mwj + ajm(v)∂mwi),

Sv(w) = µDv(w) + λdivvwI,Tv(w, q) = Sv(w)− qI.
Let J = detB. Direct computation shows that

d

dt
J = Jdivûû, J(ξ, 0) = 1⇒ J(ξ, t) = e(

∫ t
0 divûû)(ξ,s)ds) := Jû.
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Transformation to PDE in the fixed domain
Conservation of the mass transforms to the followings:

∂tρ̂+ ρ̂divûû = 0 in Ω0 × (0, T ),

ρ̂(ξ, 0) = ρ0(ξ) in Ω0

⇒ ρ̂(ξ, t) = ρ0(ξ)J−1
û := ρ̂û.

Kinematic condition of the free upper surface transforms to the followings:

∂tζ̂ = û3 on Γ0, ζ̂(ξ, 0) = ζ0.

⇒ ζ̂(ξ, t) = ζ0(ξ) +
∫ t

0
û3(ξ∗, η0(ξ∗), s)ds := ζ̂û.

Let χ̂ := X3 − ζ̂ and χ0 = ξ3 − η0(ξ∗) = 0. Then χ̂(ξ, t) = χ0 = 0 for all t > 0.
⇒ nû = ∇ûχ0

∇ûχ0
.

Momentum equation transforms to the followings.

ρ0∂tû− JûdivSû(û) = ρ0f̂ − Jû∇ûp(ρ0J
−1
û ) in Ω0,

Sû(û)nû + p0nû = α∆Γû
(t)Xû + p(ρ0J

−1
û )nû on Γ0,

ûû = 0 on Σ, û(ξ, 0) = u0(ξ).

Here

∆Γû
(t)Xû = g

− 1
2

û

2∑
γ,δ=1

∂

∂sγ
(g

1
2
û g

γδ
û

∂

∂sδ
), gû = det(gû,γδ),

gû,γδ =
∂Xû

∂sγ
· ∂Xû

∂sδ
, (gγδû ) is the inverse matrix to (gû,γδ).

Solve the nonlinear PDE in the fixed domain Ω0 with Slip Boundary condition by apply-
ing fixed point theorem after linearlization

To resume the solution of the Eulerian system, the Lagrangian transformation Xû should
be invertible. Since

∇ξXû = I +

∫ t

0

∇ξû(ξ, s)ds,

the term
∫ t

0
∇ξû(ξ, s)ds should be small, and this is related to the size of T .

So, existence could be obtained for small time interval.
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Observation
Initial conditions are given by

u(x, 0) = u0(x), ρ(x, 0) = ρ0(x), ζ(x, 0) = ζ0(x).

Let Ω0 = {(x∗, x3) : x∗ ∈ T2, 0 < x3 < ζ0(x∗)}.

Let
∫

Ω0
ρ0dx = M > 0 and

∫
Σ
ζ0(x∗)dx∗ = hb.

From the conservation of the mass, ∫
Ωt

ρdx = M,

from the incompressibility,

|Ωt| = |Ω0|, that is,
∫

Σ

ζ(x∗, t)dx∗ =

∫
Σ

ζ0(x∗)dx∗.
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Rest state
Let (ρ,u, ζ) be the solution of the rest state(equilibrium state), then

div(ρu) = 0 in Ω,

ρ(u · ∇)u− divT = −gρe3, in Ω,

with the boundary condition
u|Σ = 0,

u · n = 0 on Γ.

T(u, p)− (−p0n) = αHn,

where
Ω = {(x∗, x3) : x∗ ∈ T2, 0 < x3 < ζ(x∗)},

Γ = {(x∗, ζ(x∗) = hb) : x∗ ∈ T2} .
Additionally, it should hold that

∫
Ω0
ρdx = M > 0 and

∫
Σ
ζdx∗ = hb.

Taking inner product u to the momentum equation, then we have the identity∫
Ω

µ|D|2 + λ(divu)2dx = 0.

This implies that u = const.
u|Σ=0 ⇒ u = 0(:= ub).
Let ζ = hb(:= ζb).
u = 0⇒ k∇ρ = −ge3 ⇒ ρ = ρ∗e

− g
k
x3(:= ρb) for some ρ∗ > 0.

ζ = hb ⇒ kρ(hb) = p0 ⇒ ρ∗ = p0
k
e

g
k
hb .∫

Ω0
ρdx = M ⇒ hb = k

g
ln (1 + Mg

p0|T2|).
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Perturbed Equation near the rest state
Let σ = ρ− ρb, η = ζ − hb, then the FBVP of CNSE are rewritten as follows.

∂tσ + div(ρbu) + div(uσ) = 0,
(σ + ρb)(∂tu + (u · ∇)u)− divT = −g(σ + ρb)e3

in Ωt,

u|Σ = 0,

∂tη = u3 − (∂x1η)u1 − (∂x2η)u2 on Γt,

Tn = (−p0 + αH)n on Γt,

u(x, 0) = u0, σ(x, 0) = σ0, η(x, 0) = η0,

where
Ωt = {(x∗, x3) : x∗ ∈ T2, x3 ∈ (0, η + hb)},

Γt = {(x∗, η(x∗, t) + hb) : x8 ∈ T2}.
Additionally, ∫

Ω0

σ0dx = 0,

∫
Σ

ζ0dx = 0.
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Global in time existence and the exponential decay to the rest state
Based on the local existence of the strong solution in some finite time interval, we can

derive a priori estimates in the time interval [0, T ] to conclude that the maximal time T
could be extended to T =∞.

Theorem 0.2. There is a small number ε > 0 so that if

‖ρ0 − ρb‖H2 + ‖u0‖H2 + ‖ζ0 − ζb‖H3 < ε,

then the solution exists globally in time and

(‖ρ(t)−ρb‖H2 +‖u(t)‖H2 +‖ζ(t)−ζb‖H3)2 ≤ e−bt(‖ρ0−ρb‖H2 +‖u0‖H2 +‖ζ0−ζb‖H3)2

for some positive constant b > 0.

We show the theorem by deriving estimates of the solution and its derivatives in Hilbert
spaces, purely via energy estimates.

We can adopt Galerkin method to show local in time existence of some strong solution

σ ∈ C([0, T );H2), η ∈ C(0, T ;H3),u ∈ C([0, T );H2).
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Outline of the proof of the global in time solvability
Step 1.

Take inner product u to the momentum equations, then we have

d

dt
E(t) + aD(t) ≤ 0,

where

E(t) =

∫
Ω

ρ|u|2 + k(ρ ln ρ− ρ̄ ln ρ̄− (ln ρ̄+ 1)(ρ− ρ̂))dx+

∫
Σ

√
1 + |∇x∗ζ|2 − 1dx∗

∼ ‖u‖2
L2 + ‖σ‖2

L2 + ‖∇x∗ζ‖2
L2

when ‖σ‖L∞ + ‖∇x∗η‖L∞ is small enough, and

D(t) ∼ ‖∇u‖2
L2 .

Step 2.

Choose V satisfying that

div(ρbΦ) = σ in Ω,

V|Σ = 0, ρbV · n =
1

n3

η,

then
d

dt
F (t) + a1D0(t) ≤ S(E(t))(D(t) +D0(t)) + cD,

where 0 ≤ F (t) ≤ cE(t), D1(t) ∼ ‖∇η‖2
L2 + ‖σ‖2

L2 ,

E(t) ∼ ‖σ‖2
H2 + ‖u‖2

H2 + ‖η‖2
H3 + ‖∂tσ‖2

L2 + ‖∂tu‖2
L2 + ‖∂tη‖2

H1 .

Step 3.

d

dt
(E(t) + δF (t)) + (b− cδ − δS(E(t)))(D(t) +D0(t)) ≤ 0,

Here b = min{a, δa1}.
Observe that E(t) + δF (t) ∼ (D(t) + D0(t)) when ‖σ‖L∞ + ‖∇x∗η‖ is small enough.

If δ is small enough, then we have exponential decay of E(t).
Therefore it is necessary to derive the estimate of higher order derivatives up to the

regularity ‖σ‖L∞ + ‖∇x∗η‖, or up to ‖σ‖H2 + ‖∇x∗η‖H2 .

Step 4. Derive energy estimate concerning with the Higher order derivatives, that is,

E(t) ∼ ‖σ‖2
H2 + ‖u‖2

H2 + ‖η‖2
H3 + ‖∂tσ‖2

L2 + ‖∂tu‖2
L2 + ‖∂tη‖2

H1 ,
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and
D(t) ∼ ‖σ‖2

H2 + ‖u‖2
H3 + ‖∂tu‖2

H1 + ‖η‖2
H3 .

Step 5. Finally, obtain Gronwall inequality
d

dt
Ē(t) + D̄(t) ≤ c2D̄(t)S(Ē), for all t ∈ (0, T ),

for some S ∈ C1 which is strictly increasing near the origin, that is, S ′(0) > 0, S(0) = 0.
Here Ē ∼ E , D̄ ∼ D.
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Theorem 0.3 (Analytic continuation). Let X be a Banach space, y ∈ C([0, T );X).

If limt→T y(t) <∞, then there is T1 > T so that y(t) ∈ C([0, T1);X).

Lemma 0.4 (Gronwall’s lemma). Suppose the following inequalities hold as long asY(t) <

C0.

Z(t) ≥ c1Y(t),
d

dt
Y(t) + Z(t) ≤ c2Z(t)S(Y),

for some function S ∈ C1 which is strictly increaing near the origin, that is, S ′(0) >

0, S(0) = 0. Here C0, c1 and c2 are positive constants independent of T . Then there is a

small positive constants κ0, which depends only on C0 and c2, such that if Y(0) ≤ κ0
2

, then

Y(t) exists globally in time and satisfies the inequality

Y(t) < Y(0)e−
c1
2
t, for all t > 0.
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How to derive Higher order derivatives
i)Time derivative

Multiply ∂t(·) to the equations differentiated by t, and hen integrate over Ω.

⇒ d

dt
E2 +D2 ≤ c

√
ED,

where E2 ∼ ‖∂tσ‖2
L2 + ‖∂tu‖2

L2 + ‖∇x∗∂tη‖2
L2 and D2 ∼ ‖∇∂tu‖2

L2 .

ii)First order tangential derivatives

If F (x, t) = 0 on x3 = 0, then ∂xiF (x, t) = 0 x3 = 0.
On the other hand, if F (x, t) = 0 on Γt, that is, if F (x1, x2, hb + η(x1, x2, t)) = 0, then

∂x1F + (∂x1η)∂x3F = 0 on Γt.

Hence we introduce
∂̃i = ∂xi + (∂xi η̃)∂3,

where η̃ ∈ H 7
2 (Ωt) is an extension of η ∈ H3(Γt) so that η̃ = 0 on x3 = 0 and η̃ = η on

Γt.
Multiply ∂̂i(·) to the equations differentiated by ∂̂i, and hen integrate over Ω.

⇒ d

dt
E3 +D3 ≤ c

√
ED,

where E2 ∼ ‖∂̂iσ‖2
L2 + ‖∂̂iu‖2

L2 + ‖∇2
x∗η‖

2
L2 and D2 ∼ ‖∇∂̂iu‖2

L2 .

iii)Second order tangential derivatives

Multiply ∂̂i∂̂j(·) to the equations differentiated by ∂̂i∂̂j , and hen integrate over Ω.

⇒ d

dt
E4 +D4 ≤ c

√
ED,

where E3 ∼ ‖∂̂i∂̂jσ‖2
L2 + ‖∂̂i∂̂ju‖2

L2 + ‖∇3
x∗η‖

2
L2 and D3 ∼ ‖∇∂̂i∂̂ju‖2

L2 .
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iv) Set
E∗ ∼ ‖u‖2

L2 + ‖∇x∗u‖2
L2 + ‖∇2

x∗u‖2
L2 + ‖∂tu‖2

L2 + ‖σ‖2
L2

+‖∇x∗σ‖2
L2 + ‖∇2

x∗σ‖2
L2 + ‖∂tσ‖2

L2 + ‖ζ‖2
H3 + ‖∂tζ‖2

H1 ,

and
D∗ ∼ ‖u‖2

H1 + ‖∇∇x∗u‖2
L2 + ‖∇∇2

x∗u‖2
L2 + ‖∂tu‖2

H1 + ‖σ‖2
L2

+‖∇x∗σ‖2
L2 + ‖∇2

x∗σ‖2
L2 + ‖ζ‖2

H3 .

Combine Step 1, Step 2, i)-iii), then we have

⇒ d

dt
E∗ +D∗ ≤ c

√
ED.



16

v)normal derivatives of the velocity

From momentum equation for the first two components, that is,

µ∂2
3u∗ = (σ + ρb)(∂tu

∗ + (u · ∇)u∗)− µ∆∗u
∗ − (µ+ λ)∇∗divu + kρb∇∗

σ

ρb
,

µ‖∂2
3u∗‖2

L2 ≤ cD∗ + c
√
ED.

vi)normal derivatives of the density

Combine the momentum equation for the third component and the normal derivative of
transport equation, we have

(2µ+ λ)(∂t∂3σ + (u · ∇∂3σ + (∂3σ)divu) + kρb∂3σ = · · ·+ µρb(∆u3 − ∂3divu),

⇒ 2µ+ λ

2

d

dt

∫
|∂3σ|2 +

∫
ρb|∂3σ|2dx ≤ cD∗ + c

√
ED.

vii)Time derivative -1

Multiply ∂t(·) to the equations, and hen integrate over Ω.

⇒ d

dt
E1 +D1 ≤ c

√
ED + cD∗,

where E1 ∼ ‖∇u‖2
L2 and D1 ∼ ‖∂tu‖2

L2 .
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viii) From v)-vii)

⇒ d

dt
E0 +D0 ≤ c

√
ED + cD∗,

where E0 ∼ ‖∇u‖2
L2 + ‖∂3σ‖2

L2 and D1 ∼ ‖∂tu‖2
L2 + ‖∂3σ‖2

L2 + ‖∂2
3u‖2

L2 .
ix) From iv) and viii)

⇒ d

dt
(E∗ + θE0) + (D∗ + θD0) ≤ c

√
ED

for some small θ > 0.
Observe that

E ∼ E∗ + θE0

and
D ∼ D∗ + θD0.
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Weak solution for any large data?
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