SOLVABILITY OF THE STATIONARY COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH LARGE FORCE

BUM JA JIN
MOKPO NATIONAL UNIVERSITY
AUGUST 3, 2020

Contents

- Incompressible model of the Navier Stokes equations
- Fixed point theorem
- Iterative method
- Leray-Schauder fixed point theorem
- Galerkin method
- Rellich-Kondrachov compactness theorem
- Compressible model of the Navier Stokes equations
- Dimensionless expression
- Low Mach number expansion
- Existence via Leray Schauder theorem

Incompressible Navier-Stokes Equations

Let us consider incompressible viscous fluid with constant density $\bar{\rho}>0$ in a bounded domain $\Omega \subset \mathbb{R}^{n}, n=2,3$.

$$
\begin{array}{r}
\operatorname{div} \mathbf{U}=0 \\
\bar{\rho}\left(\partial_{t} \mathbf{U}+\mathbf{U} \cdot \nabla \mathbf{U}\right)-\mu \Delta \mathbf{U}+\nabla P=\bar{\rho} \mathbf{f} \\
\left.\mathbf{u}\right|_{\partial \Omega}=\mathbf{0}, \\
\frac{1}{|\Omega|} \int_{\Omega} P d x=0
\end{array}
$$

Here \mathbf{U} is the velocity of the fluid,
P is the pressure of the fluid, $\mu>0$ is the viscosity of the fluid.

Stationary model

$$
\begin{array}{r}
\operatorname{div} \mathbf{U}=0 \\
\bar{\rho} \mathbf{U} \cdot \nabla \mathbf{U}-\mu \Delta \mathbf{U}+\nabla P=\bar{\rho} \mathbf{f} \\
\left.\mathbf{u}\right|_{\partial \Omega}=\mathbf{0} .
\end{array}
$$

Fixed point theorem for the existence

Let us consider a mapping $T: X \rightarrow X$ for some Banach space define by $\tilde{\mathbf{u}} \mapsto \mathbf{u}$, where \mathbf{u} is a solution of the Stokes system

$$
\begin{array}{r}
\operatorname{divu}=0 \\
-\mu \Delta \mathbf{u}+\nabla p=\bar{\rho} \mathbf{f}-\bar{\rho} \tilde{\mathbf{u}} \cdot \nabla \tilde{\mathbf{u}}:=F(\mathbf{f}, \tilde{\mathbf{u}}), \\
\left.\mathbf{u}\right|_{\partial \Omega}=\mathbf{0} .
\end{array}
$$

We would like to show that there is a fixed point \mathbf{u} so that $T(\mathbf{u})=\mathbf{u}$.

- Contraction mapping theorem
(for small data; existence and uniqueness of strong solution)
- Galerkin method
(for large data; uniqueness for small data)
- Leray-Schauder theorem
(for large data; uniqueness for small data)

Theorem 0.1 (Contraction mapping theorem). Let T be a mapping $T: X \rightarrow X$ on Banach space X, and there is $\theta<1$ so that

$$
\|T(x)-T(y)\|_{X} \leq \theta\|x-y\|_{X} \text { for all } x, y \in X
$$

Then there is fixed point x so that $T(x)=x$.
Let $\mathbf{u}_{0}=\mathbf{0}$ be given, and

$$
\mathbf{u}_{1}=T\left(\mathbf{u}_{0}\right), \mathbf{u}_{2}=T\left(\mathbf{u}_{1}\right), \cdots, \mathbf{u}_{n+1}=T\left(\mathbf{u}_{n}\right), \cdots,
$$

where $T: X=H_{0}^{2} \rightarrow X$ is a mapping that $T\left(\mathbf{u}_{n}\right)=\mathbf{u}_{n+1}, \mathbf{u}_{n+1}$ is a solution of the Stokes system \mathbf{u} is a solution of the Stokes system

$$
\begin{array}{r}
\operatorname{div} \mathbf{u}_{n+1}=0 \\
-\mu \Delta \mathbf{u}_{n+1}+\nabla p_{n+1}=\bar{\rho} \mathbf{f}-\bar{\rho} \mathbf{u}_{n} \cdot \nabla \mathbf{u}_{n} \\
\left.\mathbf{u}_{n+1}\right|_{\partial \Omega}=\mathbf{0} .
\end{array}
$$

By the well known theory for the Stokes system we have

$$
\left\|\mathbf{u}_{n+1}\right\|_{X} \leq c\|\mathbf{f}\|_{Y}+c\left\|\mathbf{u}_{n}\right\|_{X}^{2}, \text { where } Y=L^{2}
$$

There is a small $M_{0}>0$ so that if $\|\mathbf{f}\|_{Y} \leq M_{0}$, then

$$
\left\|\mathbf{u}_{n+1}\right\|_{X} \leq 2 c\|\mathbf{f}\|_{Y}
$$

To show the convergence of $\left\{\mathbf{u}_{n}: n=1,2, \cdots\right\}$ it is enough to show that

$$
\left\|\mathbf{u}_{n+1}-\mathbf{u}_{n}\right\|_{X} \leq \theta\left\|\mathbf{u}_{n+1}-\mathbf{u}_{n}\right\|_{X} \text { for some } \theta<1
$$

and for some Banach space X.
Let $U_{n}=\mathbf{u}_{n+1}-\mathbf{u}_{n}$. Then

$$
\begin{array}{r}
\operatorname{div} \mathbf{U}_{n}=0, \\
-\mu \Delta \mathbf{U}_{n}+\nabla P_{n}=-\bar{\rho} \tilde{\mathbf{u}}_{n} \cdot \nabla \tilde{\mathbf{U}}_{n-1}-\bar{\rho} \tilde{\mathbf{U}}_{n} \cdot \nabla \tilde{\mathbf{u}}_{n-1}, \\
\left.\mathbf{U}_{n}\right|_{\partial \Omega}=\mathbf{0} .
\end{array}
$$

Let $X=H^{k}(\Omega), k=1,2, \cdots$. By variational formulation tested by \mathbf{U}_{n}, we have

$$
\left\|\mathbf{U}_{n}\right\|_{X} \leq c\left(\left\|\mathbf{u}_{n}\right\|_{X}+\left\|\mathbf{u}_{n-1}\right\|_{X}\right)\left\|\mathbf{U}_{n-1}\right\|_{X}
$$

Hence we need smallness of $\theta=c\left(\left\|\mathbf{u}_{n}\right\|_{X}+\left\|\mathbf{u}_{n-1}\right\|_{X}\right)$ which comes from the smallness of f.

Theorem 0.2 (Leray-Schauder's theorem). Let \mathcal{B} be a Banach space, and let $T: \mathcal{B} \times$ $[0,1] \rightarrow \mathcal{B}$ be a compact mapping, there is $x \in \mathcal{B}$ such that $T(x, 0)=0$, there is $M>0$ so that

$$
\text { if } T(x, \sigma)=x \text {, then }\|x\|_{\mathcal{B}}<M \text {. }
$$

Then $T(\cdot, 1)$ has a fixed point in $x \in \mathcal{B}$ such that $T(x, 1)=x$.
Let $((\cdot, \cdot))$ be the inner product in the Hilbert space $H=H_{0, \sigma}^{1}(\Omega)$ defined by

$$
((\mathbf{u}, \mathbf{v})):=\int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v} d x
$$

Define L_{1} by

$$
L_{1}(\mathbf{v}):=\int_{\Omega} \mathbf{u} \cdot(\mathbf{u} \cdot \nabla \mathbf{v}) d x
$$

Then $L_{1}: H \rightarrow H$ is a bounded linear operator. By Riesz theorem, there is $A \mathbf{u} \in H$ $((A(\mathbf{u}), \mathbf{v}))=\int_{\Omega} \mathbf{u} \cdot(\mathbf{u} \cdot \nabla \mathbf{v}) d x$.

Define L_{2} by

$$
L_{2}(\mathbf{v})=\int_{\Omega} \mathbf{f} \cdot \mathbf{v} d x
$$

Then $L_{2}: H \rightarrow H$ is a bounded linear operator. By Riesz theorem, there is $\mathbf{f} \in H$ $((\mathbf{F}, \mathbf{v}))=<\mathbf{f}, \mathbf{v}>$. Here $<\cdot, \cdot>$ is a duality paring between H_{0}^{1} and $H^{-1}=\left(H_{0}^{1}\right) *$.

Hence the variational formulation of the NSE can be rewritten by

$$
((\mu \mathbf{u}-A \mathbf{u}-\mathbf{F}, \mathbf{v}))=0 \text { for all } \mathbf{v} \in X
$$

Let $T \mathbf{u}=\frac{1}{\mu}(A \mathbf{u}+\mathbf{F})$. To find a solution is to find of fixed point of T.
T is a compact operator.

Let $\left\{\mathbf{u}_{n}: n=1,2, \cdots\right\}$ be a bounded sequence in $H=H_{0}^{1}(\Omega)$. There is a subsequence $\left\{\mathbf{u}_{n_{k}}: k=1,2, \cdots\right\}$ converging weakly to some $\mathbf{u} \in H_{0}^{1}(\Omega)$.

By Rellich Kondrachov compactness theorem, $H_{0}^{1}(\Omega)$ is compactly embedded into $L^{4}(\Omega)$. Hence $\left\{\mathbf{u}_{n_{k}}: k=1,2, \cdots\right\}$ converges strongly to some $\mathbf{u} \in L^{4}(\Omega)$. Since

$$
\left(\left(T\left(\mathbf{u}_{n}\right)-T(\mathbf{u}), \mathbf{v}\right)\right)=\int_{\Omega}\left(\mathbf{u}_{n}-\mathbf{u}\right) \cdot\left[\mathbf{u}_{n} \cdot \nabla \mathbf{v}\right]+\mathbf{u} \cdot\left[\left(\mathbf{u}_{n}-\mathbf{u}\right) \cdot \nabla \mathbf{v}\right] d x
$$

We conclude that

$$
\left\|T\left(\mathbf{u}_{n_{k}}\right)-T(\mathbf{u})\right\|_{H} \leq c\left\|\mathbf{u}_{n_{k}}-\mathbf{u}\right\|_{L^{4}}\left(\left\|\mathbf{u}_{n_{k}}\right\|_{H}+\|\mathbf{u}\|_{H}\right) \rightarrow 0 \text { as } k \rightarrow \infty .
$$

Galerkin method-Brower fixed point theorem

Let $\left\{\phi_{k}: k=1,2, \cdots\right\} \subset C_{0, \sigma}^{\infty}$ be the countable dense subset of $H=H_{0}^{1}(\Omega)$ with $\left(\left(\phi_{k}, \phi_{l}\right)\right)=\delta_{k l}$.

Let $V_{m}=\operatorname{span}\left\{\phi_{1}, \cdots, \phi_{m}\right\}$. Find $\mathbf{u}_{m}=\sum_{k=1}^{m} a_{m k} \phi_{k} \in V_{m}$ satisfying that

$$
\mu\left(\left(\mathbf{u}_{m}, \phi_{i}\right)\right)+\int_{\Omega} \mathbf{u}_{m} \cdot\left(\mathbf{u}_{m} \cdot \nabla \phi_{i}\right) d x=<\mathbf{f}, \phi_{i}>, k=1, \cdots, m
$$

This is equal to find $\xi=\left(a_{m 1}, \cdots, a_{m m}\right)$ so that

$$
\mu a_{m i}+\sum_{j=1}^{m} a_{m j} a_{m l} M_{j l i}=C_{i},
$$

where $M_{j l i}=\int_{\Omega} \phi_{j} \cdot\left(\phi_{l} \cdot \nabla \phi_{i}\right) d x, C_{i}=<\mathbf{f}, \phi_{i}>$.
Let $P: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n},[P \xi]_{i}=\mu a_{m i}+\sum_{j=1}^{m} a_{m j} a_{m l} M_{j l i}-<\mathbf{f}, \phi_{i}>$. Observe that

$$
[\xi, P \xi]=\mu\left\|\mathbf{u}_{m}\right\|_{H}^{2}-<\mathbf{f}, \mathbf{u}_{m}>\geq\left\|\mathbf{u}_{m}\right\|_{H}\left(\mu\left\|\mathbf{u}_{m}\right\|_{H}-\|\mathbf{f}\|_{H^{\prime}}\right.
$$

Here $[\cdot, \cdot]$ is a scalar product in \mathbb{R}^{n}. Hence $\xi^{T} P \xi>0$ if $\|\xi\|=\left\|\mathbf{u}_{m}\right\|_{H}>\frac{\|\mathbf{f}\|_{H^{\prime}}}{\mu}$.
By Brower fixed point theorem there is $\xi=\left(a_{m 1}, \cdots, a_{m m}\right) \in \mathbb{R}^{n}$ with $\|\xi\| \leq \frac{\|f\|_{H^{\prime}}}{\mu}$ and

$$
P(\xi)=0 .
$$

That is, there is $\mathbf{u}_{m}=\sum_{k=1}^{m} a_{m k} \phi_{k} \in H$ satisfying that

$$
\begin{gathered}
\|\xi\| \leq \frac{\|\mathbf{f}\|_{H^{\prime}}}{\mu} \\
\mu\left(\left(\mathbf{u}_{m}, \phi_{i}\right)\right)+\int_{\Omega} \mathbf{u}_{m} \cdot\left(\mathbf{u}_{m} \cdot \nabla \phi_{i}\right) d x=<\mathbf{f}, \phi_{i}>, k=1, \cdots, m .
\end{gathered}
$$

Since $\left\{\mathbf{u}_{m}: m=1,2, \cdots\right\}$ is bounded in $H_{0}^{1}(\Omega)$, There is a subsequence $\left\{\mathbf{u}_{n_{k}}: k=\right.$ $1,2, \cdots\}$ converging weakly to some $\mathbf{u} \in H_{0}^{1}(\Omega)$.

By Rellich Kondrachov compactness theorem, $H_{0}^{1}(\Omega)$ is compactly embedded into $L^{4}(\Omega)$. Hence $\left\{\mathbf{u}_{n_{k}}: k=1,2, \cdots\right\}$ converges strongly to some $\mathbf{u} \in L^{4}(\Omega)$.

Fix i. Passing to the limit to the identity

$$
\mu\left(\left(\mathbf{u}_{m_{k}}, \phi_{i}\right)\right)+\int_{\Omega} \mathbf{u}_{m_{k}} \cdot\left(\mathbf{u}_{m_{k}} \cdot \nabla \phi_{i}\right) d x=<\mathbf{f}, \phi_{i}>,
$$

we have

$$
\mu\left(\left(\mathbf{u}, \phi_{i}\right)\right)+\int_{\Omega} \mathbf{u} \cdot\left(\mathbf{u} \cdot \nabla \phi_{i}\right) d x=<\mathbf{f}, \phi_{i}>.
$$

Since the above holds for any i, we conclude that

$$
\mu((\mathbf{u}, \phi))+\int_{\Omega} \mathbf{u} \cdot(\mathbf{u} \cdot \nabla \phi) d x=<\mathbf{f}, \phi>\text { for any } \phi \in H_{0}^{1}(\Omega) .
$$

Theorem 0.3 (Brower fixed point theorem). Let $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear operator. If there is $k>0$ such that

$$
\|\xi \leq k \Rightarrow\| S \xi \| \leq k
$$

then there is a fixed point ξ with $\|\xi\| \leq k$.
Corollary 0.4. Let $P: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear operator. If there is $k>0$ such that

$$
[\xi, P \xi]>0 \text { for }|\xi|=k>0
$$

then there is zero point ξ with $\|\xi\| \leq k$.

Theorem 0.5 (Rellich-Kondrachov compactness theorem). Let $\Omega \subset \mathbb{R}^{n}$, Ω_{0} be a bounded subdomain of Ω and Ω_{0}^{k} be an intersection of Ω_{0} with a k dimensional plane in \mathbb{R}^{n}. Let $j \geq 0$ and $m \geq 1$ be integers, and let $1 \leq p<\infty$.
(1) Ω If Ω satisfies the cone condition and $m p \leq n$, then the following imbeddings are compact:

$$
\begin{aligned}
& W^{j+m, p}(\Omega) \rightarrow W^{j, q}\left(\Omega_{0}^{k}\right) \text { if } 0<n-m p<k \leq n \text { and } 1 \leq q<k p /(n-m p), \\
& \qquad W^{j+m, p}(\Omega) \rightarrow W^{j, q}\left(\Omega_{0}^{k}\right) \text { if } n=m p, 1 \leq k \leq n \text { and } 1 \leq q<\infty
\end{aligned}
$$

(2) If Ω satisfies the cone condition and $m p>n$, then the followings are compact:

$$
\begin{gathered}
W^{j+m, p}(\Omega) \rightarrow C_{B}^{j}\left(\Omega_{0}\right), \\
W^{j+m, p}(\Omega) \rightarrow W^{j, q}\left(\Omega_{0}^{j}\right) \text { if } 1 \leq q<\infty .
\end{gathered}
$$

(3) If Ω satisfies the strong local Lipschitz condition, then the following imbeddings are compact:

$$
\begin{gathered}
W^{j+m, p}(\Omega) \rightarrow C^{j}\left(\overline{\Omega_{0}}\right) \text { if } m p>n, \\
W^{j+m, p}(\Omega) \rightarrow C^{j, \lambda}\left(\overline{\Omega_{0}}\right) \text { if } m p>n \geq(m-1) p \text { and } 0<\lambda<m-\frac{n}{p} .
\end{gathered}
$$

(4) If Ω is an arbitrary domain in \mathbb{R}^{n}, the imbeddings (1) - (3) are compact provided $W^{j+m, p}(\Omega)$ is replaced by $W_{0}^{j+m, p}(\Omega)$.

Compressible Navier-Stokes Equations

Let incompressible viscous fluid with constant density $\bar{\rho}>0$ in a bounded domain $\Omega \subset \mathbb{R}^{n}, n=2,3$.

$$
\begin{array}{r}
\partial_{t} \rho+\operatorname{div}(\rho \mathbf{u}) 0, \\
\rho\left(\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}\right)-\mu \Delta \mathbf{u}-\lambda \nabla \operatorname{div} \mathbf{u}+\nabla p=\rho \mathbf{f}, \\
\left.\mathbf{u}\right|_{\partial \Omega}=\mathbf{0}
\end{array}
$$

Here \mathbf{u} is the velocity of the fluid,
$p=R \rho^{\gamma}, \gamma \geq 1$ is the pressure of the fluid,
$\mu>0$ and λ are the bulk viscosity and shear viscosity, respectively, of the fluid.
Stationary model

$$
\begin{array}{r}
\partial_{t} \rho+\operatorname{div}(\rho \mathbf{u})=0 \\
\rho \mathbf{u} \cdot \nabla \mathbf{u}-\mu \Delta \mathbf{u}-\lambda \nabla \operatorname{divu}+\nabla p=\rho \mathbf{f} \\
\left.\mathbf{u}\right|_{\partial \Omega}=\mathbf{0}
\end{array}
$$

Scaling to dimensionless form

$t_{*}, l_{*}, u_{*}=\frac{l_{*}}{t_{*}}, \rho_{*}, f_{*}:$ Characteristic quantity of $t, \mathbf{x}, \mathbf{u}, \rho, \mathbf{f}$.

$$
\begin{array}{r}
\partial_{t} \rho+\operatorname{div}(\rho \mathbf{u})=0, \\
\rho\left(\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}\right)-\frac{1}{R e_{1}} \Delta \mathbf{u}-\frac{1}{R e_{2}} \nabla \operatorname{div} \mathbf{u}+\frac{1}{M a^{2}} \nabla p=\frac{1}{F r^{2}} \rho \mathbf{f}, \\
\left.\mathbf{u}\right|_{\partial \Omega}=\mathbf{0} .
\end{array}
$$

Here $R e_{1}=\frac{\rho_{*} l_{*} u_{*}}{\mu}:=\frac{1}{\mu_{1}}, R e_{2}=R e_{1}=\frac{\rho_{*} l_{*} u_{*}}{\lambda}:=\frac{1}{\lambda_{1}}$ are Reynolds numbers, $M a^{2}=$ $\frac{\rho_{*} l_{*} t}{u_{*} t_{*} p\left(\rho_{*}\right)} \sim \frac{u_{*}^{2}}{p^{\prime}\left(\rho_{*}\right)}:=\epsilon^{2}$ are Mach numbers, $F r^{2}=\frac{t_{*}}{u_{*} f_{*}}$.

Low Mach number limit to the incompressible fluid
Consider the case that $\mu_{1}, \mu_{2}, F r$ are fixed but ϵ is going to small, which is the case $u_{*} \sim \epsilon, \mu \sim \epsilon, \lambda \sim \epsilon, t_{*} \sim \frac{1}{\epsilon}, f_{*} \sim \epsilon^{2}, l_{*} \sim 1, \rho_{*} \sim 1$.

Formally, assuming

$$
\begin{array}{r}
\rho=\bar{\rho}+\Pi \epsilon^{2}+O\left(\epsilon^{3}\right), \\
\bar{\rho}\left(\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}\right)-\frac{1}{R e_{1}} \Delta \mathbf{u}(\bar{\rho} \mathbf{u})=O\left(\epsilon^{2}\right), \\
R e_{2} \\
\operatorname{div} \mathbf{u}+\nabla \Pi=\frac{1}{F r^{2}} \rho \mathbf{f}+O(\epsilon), \\
\left.\mathbf{u}\right|_{\partial \Omega}=\mathbf{0} .
\end{array}
$$

Stationary model

$$
\begin{array}{r}
\operatorname{div}(\rho \mathbf{u})=0 \\
\rho \mathbf{u} \cdot \nabla \mathbf{u}-\mu_{1} \Delta \mathbf{u}-\lambda_{1} \nabla \operatorname{divu}+\frac{1}{\epsilon^{2}} \nabla p=\rho \mathbf{f} \\
\left.\mathbf{u}\right|_{\partial \Omega}=\mathbf{0} .
\end{array}
$$

- Known Result: Existence of incompressible flow for any large external force (without Uniqueness).

$$
\begin{array}{r}
\operatorname{div}(\bar{\rho} \mathbf{U})=0 \\
\bar{\rho} \mathbf{U} \cdot \nabla \mathbf{U}-\mu_{1} \Delta \mathbf{U}-\mu_{2} \nabla \operatorname{div} \mathbf{U}+\nabla P=\bar{\rho} \mathbf{f} \\
\left.\mathbf{U}\right|_{\partial \Omega}=\mathbf{0} .
\end{array}
$$

Question: Is this the Low Mach number limit of the compressible fluid with $\frac{1}{|\Omega|} \int_{\Omega} \rho d x=$ $\bar{\rho}>0$?

Without loss of generality, assume that $p^{\prime}(\bar{\rho})=1$.
Setting

$$
\begin{array}{r}
\rho=\bar{\rho}+\epsilon^{2}(\sigma+P), \mathbf{u}=\mathbf{U}+\mathbf{v}, \\
\operatorname{div}(\bar{\rho} \mathbf{v})+\epsilon^{2} \operatorname{div}(\sigma(\mathbf{U}+\mathbf{v}))=\epsilon^{2} G(\sigma, \mathbf{v}, \mathbf{U}, P), \\
\bar{\rho}(\mathbf{U}+\mathbf{v}) \cdot \nabla \mathbf{v}+\bar{\rho} \mathbf{v} \cdot \nabla U-\mu_{1} \Delta \mathbf{v}-\lambda_{1} \nabla \operatorname{div} \mathbf{v}+\nabla \sigma=\epsilon^{2} \mathbf{F}(\sigma, \mathbf{v}, \mathbf{U}, P), \\
\left.\mathbf{u}\right|_{\partial \Omega}=\mathbf{0}, \\
\frac{1}{|\Omega|} \int_{\Omega} \sigma d x=0 .
\end{array}
$$

Here

$$
\begin{gathered}
G=-2 \operatorname{div}(P(\mathbf{U}+\mathbf{v})) \\
\mathbf{F}=(P+\sigma) \mathbf{f}-(P+\sigma)(\mathbf{U}+\mathbf{v}) \cdot \nabla(\mathbf{U}+\mathbf{v}) \\
+\nabla\left(\frac{p\left(\bar{\rho}+\epsilon^{2}(\sigma+P)\right)-p(\bar{\rho})-p^{\prime}(\bar{\rho}) \epsilon^{2}(\sigma+P)}{\epsilon^{2}}\right) .
\end{gathered}
$$

Theorem 0.6 (Schauder's fixed point theorem). Let \mathcal{C} be closed convex subspace of Banach space \mathcal{B}, and let $T: \mathcal{C} \rightarrow \mathcal{C}$ be a continuous mapping, that is,
for each $\epsilon>0$, there is $\delta>0$ such that $\|x-y\|_{\mathcal{B}}<\delta \Rightarrow\|T(x)-T(y)\|_{\mathcal{B}}<\epsilon$, and $T(\mathcal{C})$ is precompact, that is,
$\left\{x_{n}: n=1,2, \cdots\right\}$ is bounded sequence, then there is subsequence $\left\{x_{n_{k}}: k=1,2, \cdots\right\}$ so that $T\left(x_{n_{k}}\right)$ converges strongly to some $T(x)$ for some $x \in \mathcal{C}$.
Then T has a fixed point in \mathcal{C} such that $T x=x$.

Decomposition, and linearlization

Observation

Introduce an operator $T: X \rightarrow X,(\tilde{\sigma}, \tilde{\mathbf{v}}) \mapsto(\sigma, \mathbf{v})$ defined by that for each given data $(\tilde{\sigma}, \tilde{\mathbf{v}})$, let (σ, \mathbf{v}) be the solution of

$$
\begin{array}{r}
(\sigma-\tilde{\sigma})+\operatorname{div}(\bar{\rho} \mathbf{v})+\epsilon^{2} \operatorname{div}(\sigma(\mathbf{U}+\mathbf{v}))=\epsilon^{2} G(\tilde{\sigma}, \tilde{\mathbf{v}}, \mathbf{U}, P), \\
\bar{\rho}(\mathbf{U}+\mathbf{v}) \cdot \nabla \mathbf{v}-\mu_{1} \Delta \mathbf{v}-\lambda_{1} \nabla \operatorname{div} \mathbf{v}+\nabla \sigma=\epsilon^{2} \mathbf{F}(\tilde{\sigma}, \tilde{\mathbf{v}}, \mathbf{U}, P), \\
\left.\mathbf{u}\right|_{\partial \Omega}=\mathbf{0} .
\end{array}
$$

Let $X=\left\{(\sigma, \mathbf{v}) \in H_{0}^{3} \times H^{2}:\|\sigma\|_{H^{2}}+\|\mathbf{v}\|_{H^{3}} \leq M\right\}$. To apply Schauder theorem, we should find $M>0$ so that if $(\tilde{\sigma}, \tilde{\mathbf{u}}) \in X$, then $T(\tilde{\sigma}, \tilde{\mathbf{u}}))=(\sigma, \mathbf{v}) \in X$.

According to the "A Priori estimate", it does not seem to be possible to have such M if \mathbf{U} is not small enough, in other words, if f is not small enough.

Decomposition

$$
\begin{array}{r}
\operatorname{div}(\bar{\rho} \mathbf{U})=0 \\
\bar{\rho}(\mathbf{U}+\mathbf{v}) \cdot \nabla \mathbf{U}-\mu_{1} \Delta \mathbf{U}-\mu_{2} \nabla \operatorname{div} \mathbf{U}+\nabla P=\bar{\rho} \mathbf{f} \\
\left.\mathbf{U}\right|_{\partial \Omega}=\mathbf{0} \\
\frac{1}{|\Omega|} \int_{\Omega} P d x=0
\end{array}
$$

and

$$
\begin{array}{r}
\operatorname{div}(\bar{\rho} \mathbf{v})+\epsilon^{2} \operatorname{div}(\sigma(\mathbf{U}+\mathbf{v}))=\epsilon^{2} G(\sigma, \mathbf{v}, \mathbf{U}, P), \\
\bar{\rho}(\mathbf{U}+\mathbf{v}) \cdot \nabla \mathbf{v}-\mu_{1} \Delta \mathbf{v}-\lambda_{1} \nabla \operatorname{div} \mathbf{v}+\nabla \sigma= \\
\epsilon^{2} \mathbf{F}(\sigma, \mathbf{v}, \mathbf{U}, P), \\
\left.\mathbf{u}\right|_{\partial \Omega}=\mathbf{0}, \\
\frac{1}{|\Omega|} \int_{\Omega} \sigma d x=0
\end{array}
$$

Linearlization

$$
\begin{array}{r}
\operatorname{div}(\bar{\rho} \mathbf{U})=0 \\
\bar{\rho}(\tilde{\mathbf{U}}+\tilde{\mathbf{v}}) \cdot \nabla \mathbf{U}-\mu_{1} \Delta \mathbf{U}-\mu_{2} \nabla \operatorname{div} \mathbf{U}+\nabla P=\bar{\rho} \mathbf{f} \\
\left.\mathbf{U}\right|_{\partial \Omega}=\mathbf{0} \\
\frac{1}{|\Omega|} \int_{\Omega} P d x=0
\end{array}
$$

and

$$
\begin{array}{r}
(\sigma-\tilde{\sigma})+\operatorname{div}(\bar{\rho} \mathbf{v})+\epsilon^{2} \operatorname{div}(\sigma(\mathbf{U}+\mathbf{v}))=\epsilon^{2} G(\tilde{\sigma}, \tilde{\mathbf{v}}, \tilde{\mathbf{U}}, \tilde{P}), \\
\bar{\rho}(\tilde{\mathbf{U}}+\tilde{\mathbf{v}}) \cdot \nabla \mathbf{v}-\mu_{1} \Delta \mathbf{v}-\lambda_{1} \nabla \operatorname{div} \mathbf{v}+\nabla \sigma=\epsilon^{2} \mathbf{F}(\tilde{\sigma}, \tilde{\mathbf{v}}, \tilde{\mathbf{U}}, \tilde{P}), \\
\left.\mathbf{u}\right|_{\partial \Omega}=\mathbf{0}, \\
\frac{1}{|\Omega|} \int_{\Omega} \sigma d x=0 .
\end{array}
$$

Introduce an operator $T: X \rightarrow X,(\tilde{\mathbf{U}}, \tilde{P}, \tilde{\sigma}, \tilde{\mathbf{v}}) \mapsto(\mathbf{U}, P, \sigma, \mathbf{v})$. Let $X=\{(\mathbf{U}, \mathbf{v}, P, \sigma) \in$ $H_{0}^{3} \times H_{0}^{3} \times H^{2} \times H^{2}: \| P$
$\left.H^{2}+\|\sigma\|_{H^{2}}+\|\mathbf{U}\|_{H^{3}}+\|\mathbf{v}\|_{H^{3}} \leq M\right\}$. To apply Schauder theorem, we should find $M>0$ so that if $(\tilde{P}, \tilde{\sigma}, \tilde{\mathbf{U}}, \tilde{\mathbf{u}}) \in X$, then $T(\tilde{P}, \tilde{\sigma}, \tilde{\mathbf{U}}, \tilde{\mathbf{u}}))=(\tilde{P}, \sigma, \tilde{\mathbf{U}}, \mathbf{v}) \in X$.

By standard estimates we can show that there is small $M>0$ and ϵ_{0} so that $T X \subset X$ if $\epsilon \leq \epsilon_{0}$. We can also show that T is continuous with respect to the norm of the Banach space $L^{2} \times L^{2} \times H_{0}^{1} \times H_{0}^{1}$. Finally, applying Schauder's compactness theorem there is a fixed point of T.

Defect: Uniqueness? Incompressible limit?
Try to find better decomposition or better approximation!!!

Weak solution for large data to the equations

$$
\begin{array}{r}
\operatorname{div}(\rho \mathbf{u})=0 \\
\rho \mathbf{u} \cdot \nabla \mathbf{u}-\mu \Delta \mathbf{u}-\lambda \nabla \operatorname{divu}+\nabla p=\rho \mathbf{f} \\
\left.\mathbf{u}\right|_{\partial \Omega}=\mathbf{0} .
\end{array}
$$

By P.L. Lions(1997) for large data when $\gamma>\max \left\{3, \frac{n}{2}\right\}$, Defect: Uniqueness, Regularity?
Search for the recent literature concerning the cases $\gamma \leq \frac{n}{2}$.

REFERENCES

[1] R.A. Adams and J. J.F. Fournier, Sobolev spaces, Pure and Applied Mathematics series 140.
[2] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes equations, Springer Tracts in NAtural Philosophy 38.
[3] D. Gilbaerg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Classical in Mathematics, Springer.
[4] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompresible Flow, A series of Monographs and Texts 2, Courant Institute of Mathematiccal Sciences.
[5] P.L. Lions, Mathematical Topics in Fluid Mechanics, Oxford Lecture Series in Mathematics and Its Applications 10.
[6] A. Novotny and Ivan Straskraba, Introdution to the Mathematical Theory of compressible flow, Oxford Lecture Series in Mathematics and Its Applications 27.
[7] R. Teman, Navier-Stokes Equations, Theory and Numerical Analysis, Studies in MAthematics and Its Applications 2.

