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Incompressible Navier-Stokes Equations
Let us consider incompressible viscous fluid with constant density ρ̄ > 0 in a bounded

domain Ω ⊂ Rn, n = 2, 3.

divU = 0,

ρ̄(∂tU + U · ∇U)− µ∆U +∇P = ρ̄f ,

u|∂Ω = 0,

1

|Ω|

∫
Ω

Pdx = 0.

Here U is the velocity of the fluid,
P is the pressure of the fluid,
µ > 0 is the viscosity of the fluid.

Stationary model

divU = 0,

ρ̄U · ∇U− µ∆U +∇P = ρ̄f ,

u|∂Ω = 0.
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Fixed point theorem for the existence
Let us consider a mapping T : X → X for some Banach space define by ũ 7→ u, where

u is a solution of the Stokes system

divu = 0,

−µ∆u +∇p = ρ̄f − ρ̄ũ · ∇ũ := F (f , ũ),

u|∂Ω = 0.

We would like to show that there is a fixed point u so that T (u) = u.

• Contraction mapping theorem
(for small data; existence and uniqueness of strong solution )
• Galerkin method

(for large data; uniqueness for small data )
• Leray-Schauder theorem

( for large data; uniqueness for small data)
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Theorem 0.1 ( Contraction mapping theorem). Let T be a mapping T : X → X on Banach

space X , and there is θ < 1 so that

‖T (x)− T (y)‖X ≤ θ‖x− y‖X for all x, y ∈ X.

Then there is fixed point x so that T (x) = x.

Let u0 = 0 be given, and

u1 = T (u0), u2 = T (u1), · · · ,un+1 = T (un), · · · ,

where T : X = H2
0 → X is a mapping that T (un) = un+1, un+1 is a solution of the Stokes

system u is a solution of the Stokes system

divun+1 = 0,

−µ∆un+1 +∇pn+1 = ρ̄f − ρ̄un · ∇un,

un+1|∂Ω = 0.

By the well known theory for the Stokes system we have

‖un+1‖X ≤ c‖f‖Y + c‖un‖2
X , where Y = L2.

There is a small M0 > 0 so that if ‖f‖Y ≤M0, then

‖un+1‖X ≤ 2c‖f‖Y .

To show the convergence of {un : n = 1, 2, · · · }
it is enough to show that

‖un+1 − un‖X ≤ θ‖un+1 − un‖X for some θ < 1

and for some Banach space X .
Let Un = un+1 − un. Then

divUn = 0,

−µ∆Un +∇Pn = −ρ̄ũn · ∇Ũn−1 − ρ̄Ũn · ∇ũn−1,

Un|∂Ω = 0.

Let X = Hk(Ω), k = 1, 2, · · · . By variational formulation tested by Un, we have

‖Un‖X ≤ c(‖un‖X + ‖un−1‖X)‖Un−1‖X .

Hence we need smallness of θ = c(‖un‖X + ‖un−1‖X) which comes from the smallness
of f .
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Theorem 0.2 (Leray-Schauder’s theorem). Let B be a Banach space, and let T : B ×
[0, 1] → B be a compact mapping , there is x ∈ B such that T (x, 0) = 0, there is M > 0

so that

if T (x, σ) = x, then ‖x‖B < M.

Then T (·, 1) has a fixed point in x ∈ B such that T (x, 1) = x.

Let ((·, ·)) be the inner product in the Hilbert space H = H1
0,σ(Ω) defined by

((u,v)) :=

∫
Ω

∇u · ∇vdx.

Define L1 by

L1(v) :=

∫
Ω

u · (u · ∇v)dx.

Then L1 : H → H is a bounded linear operator. By Riesz theorem, there is Au ∈ H

((A(u),v)) =
∫

Ω
u · (u · ∇v)dx.

Define L2 by

L2(v) =

∫
Ω

f · vdx.

Then L2 : H → H is a bounded linear operator. By Riesz theorem, there is f ∈ H

((F,v)) =< f ,v >. Here < ·, · > is a duality paring between H1
0 and H−1 = (H1

0 )∗.
Hence the variational formulation of the NSE can be rewritten by

((µu− Au− F,v)) = 0 for all v ∈ X.

Let Tu = 1
µ
(Au + F). To find a solution is to find of fixed point of T .

T is a compact operator.
∵

Let {un : n = 1, 2, · · · } be a bounded sequence in H = H1
0 (Ω). There is a subsequence

{unk
: k = 1, 2, · · · } converging weakly to some u ∈ H1

0 (Ω).

By Rellich Kondrachov compactness theorem,H1
0 (Ω) is compactly embedded intoL4(Ω).

Hence {unk
: k = 1, 2, · · · } converges strongly to some u ∈ L4(Ω). Since

((T (un)− T (u),v)) =

∫
Ω

(un − u) · [un · ∇v] + u · [(un − u) · ∇v]dx,

We conclude that

‖T (unk
)− T (u)‖H ≤ c‖unk

− u‖L4(‖unk
‖H + ‖u‖H)→ 0 as k →∞.
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Galerkin method-Brower fixed point theorem
Let {φk : k = 1, 2, · · · } ⊂ C∞0,σ be the countable dense subset of H = H1

0 (Ω) with
((φk, φl)) = δkl.

Let Vm = span{φ1, · · · , φm}. Find um =
∑m

k=1 amkφk ∈ Vm satisfying that

µ((um, φi)) +

∫
Ω

um · (um · ∇φi)dx =< f , φi >, k = 1, · · · ,m.

This is equal to find ξ = (am1, · · · , amm) so that

µami +
m∑
j=1

amjamlMjli = Ci,

where Mjli =
∫

Ω
φj · (φl · ∇φi)dx, Ci =< f , φi > .

Let P : Rn → Rn, [Pξ]i = µami +
∑m

j=1 amjamlMjli− < f , φi >. Observe that

[ξ, Pξ] = µ‖um‖2
H− < f ,um >≥ ‖um‖H(µ‖um‖H − ‖f‖H′ .

Here [·, ·] is a scalar product in Rn. Hence ξTPξ > 0 if ‖ξ‖ = ‖um‖H >
‖f‖H′
µ

.

By Brower fixed point theorem there is ξ = (am1, · · · , amm) ∈ Rn with ‖ξ‖ ≤ ‖f‖H′
µ

and
P (ξ) = 0.

That is, there is um =
∑m

k=1 amkφk ∈ H satisfying that

‖ξ‖ ≤ ‖f‖H
′

µ
,

µ((um, φi)) +

∫
Ω

um · (um · ∇φi)dx =< f , φi >, k = 1, · · · ,m.

Since {um : m = 1, 2, · · · } is bounded in H1
0 (Ω), There is a subsequence {unk

: k =

1, 2, · · · } converging weakly to some u ∈ H1
0 (Ω).

By Rellich Kondrachov compactness theorem,H1
0 (Ω) is compactly embedded intoL4(Ω).

Hence {unk
: k = 1, 2, · · · } converges strongly to some u ∈ L4(Ω).

Fix i. Passing to the limit to the identity

µ((umk
, φi)) +

∫
Ω

umk
· (umk

· ∇φi)dx =< f , φi >,

we have
µ((u, φi)) +

∫
Ω

u · (u · ∇φi)dx =< f , φi > .

Since the above holds for any i, we conclude that

µ((u, φ)) +

∫
Ω

u · (u · ∇φ)dx =< f , φ > for any φ ∈ H1
0 (Ω).
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Theorem 0.3 (Brower fixed point theorem). Let S : Rn → Rn be a linear operator. If

there is k > 0 such that

‖ξ ≤ k ⇒ ‖Sξ‖ ≤ k,

then there is a fixed point ξ with ‖ξ‖ ≤ k.

Corollary 0.4. Let P : Rn → Rn be a linear operator. If there is k > 0 such that

[ξ, Pξ] > 0 for |ξ| = k > 0,

then there is zero point ξ with ‖ξ‖ ≤ k.
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Theorem 0.5 (Rellich-Kondrachov compactness theorem). Let Ω ⊂ Rn, Ω0 be a bounded

subdomain of Ω and Ωk
0 be an intersection of Ω0 with a k dimensional plane in Rn. Let

j ≥ 0 and m ≥ 1 be integers, and let 1 ≤ p <∞.
(1) Ω If Ω satisfies the cone condition and mp ≤ n, then the following imbeddings are

compact:

W j+m,p(Ω)→ W j,q(Ωk
0) if 0 < n−mp < k ≤ n and 1 ≤ q < kp/(n−mp),

W j+m,p(Ω)→ W j,q(Ωk
0) if n = mp, 1 ≤ k ≤ n and 1 ≤ q <∞.

(2) If Ω satisfies the cone condition and mp > n, then the followings are compact:

W j+m,p(Ω)→ Cj
B(Ω0),

W j+m,p(Ω)→ W j,q(Ωj
0) if 1 ≤ q <∞.

(3) If Ω satisfies the strong local Lipschitz condition, then the following imbeddings are

compact:

W j+m,p(Ω)→ Cj(Ω0) if mp > n,

W j+m,p(Ω)→ Cj,λ(Ω0) if mp > n ≥ (m− 1)p and 0 < λ < m− n

p
.

(4) If Ω is an arbitrary domain in Rn, the imbeddings (1) − (3) are compact provided

W j+m,p(Ω) is replaced by W j+m,p
0 (Ω).
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Compressible Navier-Stokes Equations
Let incompressible viscous fluid with constant density ρ̄ > 0 in a bounded domain

Ω ⊂ Rn, n = 2, 3.

∂tρ+ div(ρu)0,

ρ(∂tu + u · ∇u)− µ∆u− λ∇divu +∇p = ρf ,

u|∂Ω = 0.

Here u is the velocity of the fluid,
p = Rργ, γ ≥ 1 is the pressure of the fluid,
µ > 0 and λ are the bulk viscosity and shear viscosity, respectively, of the fluid.

Stationary model

∂tρ+ div(ρu) = 0,

ρu · ∇u− µ∆u− λ∇divu +∇p = ρf ,

u|∂Ω = 0.
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Scaling to dimensionless form

t∗, l∗, u∗ = l∗
t∗
, ρ∗, f∗: Characteristic quantity of t,x,u, ρ, f .

∂tρ+ div(ρu) = 0,

ρ(∂tu + u · ∇u)− 1

Re1

∆u− 1

Re2

∇divu +
1

Ma2
∇p =

1

Fr2
ρf ,

u|∂Ω = 0.

Here Re1 = ρ∗l∗u∗
µ

:= 1
µ1
, Re2 = Re1 = ρ∗l∗u∗

λ
:= 1

λ1
are Reynolds numbers, Ma2 =

ρ∗l∗t
u∗t∗p(ρ∗)

∼ u2∗
p′(ρ∗)

:= ε2 are Mach numbers, Fr2 = t∗
u∗f∗

.
Low Mach number limit to the incompressible fluid
Consider the case that µ1, µ2, F r are fixed but ε is going to small, which is the case

u∗ ∼ ε, µ ∼ ε, λ ∼ ε, t∗ ∼ 1
ε
, f∗ ∼ ε2, l∗ ∼ 1, ρ∗ ∼ 1.

Formally, assuming
ρ = ρ̄+ Πε2 +O(ε3),

div(ρ̄u) = O(ε2),

ρ̄(∂tu + u · ∇u)− 1

Re1

∆u− 1

Re2

∇divu +∇Π =
1

Fr2
ρf +O(ε),

u|∂Ω = 0.



12

Stationary model

div(ρu) = 0,

ρu · ∇u− µ1∆u− λ1∇divu +
1

ε2
∇p = ρf ,

u|∂Ω = 0.

• Known Result: Existence of incompressible flow for any large external force (without
Uniqueness).

div(ρ̄U) = 0,

ρ̄U · ∇U− µ1∆U− µ2∇divU +∇P = ρ̄f ,

U|∂Ω = 0.

Question: Is this the Low Mach number limit of the compressible fluid with 1
|Ω|

∫
Ω
ρdx =

ρ̄ > 0?
Without loss of generality, assume that p′(ρ̄) = 1.
Setting

ρ = ρ̄+ ε2(σ + P ), u = U + v,

div(ρ̄v) + ε2div(σ(U + v)) = ε2G(σ,v,U, P ),

ρ̄(U + v) · ∇v + ρ̄v · ∇U − µ1∆v − λ1∇divv +∇σ = ε2F(σ,v,U, P ),

u|∂Ω = 0,

1

|Ω|

∫
Ω

σdx = 0.

Here
G = −2div(P (U + v)),

F = (P + σ)f − (P + σ)(U + v) · ∇(U + v)

+∇
(p(ρ̄+ ε2(σ + P ))− p(ρ̄)− p′(ρ̄)ε2(σ + P )

ε2

)
.
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Theorem 0.6 (Schauder’s fixed point theorem). Let C be closed convex subspace of Banach

space B, and let T : C → C be a continuous mapping, that is,

for each ε > 0, there is δ > 0 such that ‖x− y‖B < δ ⇒ ‖T (x)− T (y)‖B < ε,

and T (C) is precompact, that is,

{xn : n = 1, 2, · · · } is bounded sequence, then there is subsequence {xnk
: k = 1, 2, · · · }

so that T (xnk
) converges strongly to some T (x) for some x ∈ C.

Then T has a fixed point in C such that Tx = x.
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Decomposition, and linearlization
Observation
Introduce an operator T : X → X, (σ̃, ṽ) 7→ (σ,v) defined by that for each given data

(σ̃, ṽ), let (σ,v) be the solution of

(σ − σ̃) + div(ρ̄v) + ε2div(σ(U + v)) = ε2G(σ̃, ṽ,U, P ),

ρ̄(U + v) · ∇v − µ1∆v − λ1∇divv +∇σ = ε2F(σ̃, ṽ,U, P ),

u|∂Ω = 0.

Let X = {(σ,v) ∈ H3
0 × H2 : ‖σ‖H2 + ‖v‖H3 ≤ M}. To apply Schauder theorem, we

should find M > 0 so that if (σ̃, ũ) ∈ X , then T (σ̃, ũ)) = (σ,v) ∈ X .
According to the ”A Priori estimate”, it does not seem to be possible to have such M if

U is not small enough, in other words, if f is not small enough.
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Decomposition

div(ρ̄U) = 0,

ρ̄(U + v) · ∇U− µ1∆U− µ2∇divU +∇P = ρ̄f ,

U|∂Ω = 0,

1

|Ω|

∫
Ω

Pdx = 0,

and

div(ρ̄v) + ε2div(σ(U + v)) = ε2G(σ,v,U, P ),

ρ̄(U + v) · ∇v − µ1∆v − λ1∇divv +∇σ = ε2F(σ,v,U, P ),

u|∂Ω = 0,

1

|Ω|

∫
Ω

σdx = 0.
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Linearlization

div(ρ̄U) = 0,

ρ̄(Ũ + ṽ) · ∇U− µ1∆U− µ2∇divU +∇P = ρ̄f ,

U|∂Ω = 0,

1

|Ω|

∫
Ω

Pdx = 0,

and

(σ − σ̃) + div(ρ̄v) + ε2div(σ(U + v)) = ε2G(σ̃, ṽ, Ũ, P̃ ),

ρ̄(Ũ + ṽ) · ∇v − µ1∆v − λ1∇divv +∇σ = ε2F(σ̃, ṽ, Ũ, P̃ ),

u|∂Ω = 0,

1

|Ω|

∫
Ω

σdx = 0.

Introduce an operator T : X → X, (Ũ, P̃ , σ̃, ṽ) 7→ (U, P, σ,v). LetX = {(U,v, P, σ) ∈
H3

0 ×H3
0 ×H2 ×H2 : ‖P

H2 +‖σ‖H2 +‖U‖H3 +‖v‖H3 ≤M}. To apply Schauder theorem, we should find M > 0

so that if (P̃ , σ̃, Ũ, ũ) ∈ X , then T (P̃ , σ̃, Ũ, ũ)) = (P̃ , σ, Ũ,v) ∈ X .
By standard estimates we can show that there is small M > 0 and ε0 so that TX ⊂ X

if ε ≤ ε0. We can also show that T is continuous with respect to the norm of the Banach
space L2 × L2 × H1

0 × H1
0 . Finally, applying Schauder’s compactness theorem there is a

fixed point of T .
Defect: Uniqueness? Incompressible limit?
Try to find better decomposition or better approximation!!!
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Weak solution for large data to the equations

div(ρu) = 0,

ρu · ∇u− µ∆u− λ∇divu +∇p = ρf ,

u|∂Ω = 0.

By P.L. Lions(1997) for large data when γ > max{3, n
2
} ,

Defect: Uniqueness, Regularity?
Search for the recent literature concerning the cases γ ≤ n

2
.
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