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1. Notation, operator Pσ

Notation. • The outer normal vector to ∂Ω is denoted by n.

• Vector functions and spaces of vector functions are denoted by boldface letters.

• C∞0,σ(Ω) denotes the linear space of infinitely differentiable divergence-free vector
functions in Ω, with a compact support in Ω.

• L2
σ(Ω) is the closure of C∞0,σ(Ω) in L2(Ω).

• W1,2
0,σ(Ω) := L2

σ(Ω) ∩W1,2
0 (Ω)

• The norm in Lq(Ω) and in Lq(Ω) is denoted by ‖ . ‖q. The norm in W k,q(Ω) and in
Wk,q(Ω) (for k ∈ N) is denoted by ‖ . ‖k,q.

If the considered domain differs from Ω then we use e.g. the notation ‖ . ‖q; Ω′, etc.

The scalar product in L2(Ω) and in L2(Ω) is denoted by ( . , . )2 and the scalar product
in W 1,2(Ω) and in W1,2(Ω) is denoted by ( . , . )1,2.

• The duality between elements of W−1,2
0 (Ω) and W1,2

0 (Ω) is denoted by 〈 . , . 〉0 and the
duality between elements of W−1,2

0,σ (Ω) and W1,2
0,σ(Ω) is denoted by 〈 . , . 〉0,σ.
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L2(Ω) and L2
σ(Ω) as subspaces of W−1,2

0 (Ω) and W−1,2
0,σ (Ω). The Lebesgue space L2(Ω)

can be identified with a subspace of W−1,2
0 (Ω) so that if f ∈ L2(Ω) then

〈f ,w〉0 :=

∫
Ω

f ·w dx for all w ∈W1,2
0 (Ω). (1)

Similarly, L2
σ(Ω) can be identified with a subspace of W−1,2

0,σ (Ω) so that if f ∈ L2
σ(Ω) then

〈f ,w〉0,σ :=

∫
Ω

f ·w dx for all w ∈W1,2
0,σ(Ω). (2)

Note that L2(Ω) cannot be identified with a subspace of W−1,2
0,σ (Ω).

Operator Pσ. W1,2
0,σ(Ω) is a closed subspace of W1,2

0 (Ω). If f ∈ W−1,2
0 (Ω) (i.e. f is

a bounded linear functional on W1,2
0 (Ω)) then we denote by Pσf the restriction of f to

W1,2
0,σ(Ω). Thus, Pσf is an element of W−1,2

0,σ (Ω), defined by the equation

〈Pσf ,w〉0,σ := 〈f ,w〉0 for all w ∈W1,2
0,σ(Ω).

Obviously, Pσ is a linear operator from W−1,2
0 (Ω) to W−1,2

0,σ (Ω), whose domain is the
whole space W−1,2

0 (Ω).
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Lemma 1. Operator Pσ is bounded, its range is W−1,2
0,σ (Ω) and Pσ is not 1–1.

Proof. 1) The proof of the boundedness of Pσ is a simple exercise: let f ∈ W−1,2
0 (Ω).

Then

‖Pσf‖−1,2;σ = sup
w∈W1,2

0,σ(Ω); w 6=0

|〈Pσf ,w〉0,σ|
‖w‖1,2

= sup
w∈W1,2

0,σ(Ω); w 6=0

|〈f ,w〉0|
‖w‖1,2

≤ sup
w∈W1,2

0 (Ω); w 6=0

|〈f ,w〉0|
‖w‖1,2

= ‖f‖−1,2.

2) Let g ∈ W−1,2
0,σ (Ω). There exists (by the Hahn-Banach theorem) an extension of g

from W1,2
0,σ(Ω) to W1,2

0 (Ω), which we denote by gext. The extension is an element of
W−1,2

0 (Ω), satisfying ‖gext‖−1,2 = ‖g‖−1,2;σ and

〈gext,w〉0 = 〈g,w〉0,σ for all w ∈W1,2
0,σ(Ω).

This shows that g = Pσ(gext). Consequently, W−1,2
0,σ (Ω) = R(Pσ).
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3) Finally, taking f = ∇g for g ∈ C∞0 (Ω), we get

〈Pσf ,w〉0,σ = 〈f ,w〉0 =

∫
Ω

∇q ·w dx = 0

for all w ∈W1,2
0,σ(Ω). This shows that the operator Pσ is not one-to-one. �

The relation between the Helmholtz projection Pσ and operator Pσ. Let g ∈ L2(Ω).
Treating g as an element of W−1,2

0 (Ω), we have

〈Pσg,w〉0,σ = 〈g,w〉0 for all w ∈W1,2
0,σ(Ω).

Writing g = Pσg +Qσg, we also get

〈g,w〉0 =
〈
Pσg +Qσg,w

〉
0

=
〈
Pσg,w

〉
0

=
〈
Pσg,w

〉
0,σ

for all w ∈W1,2
0,σ(Ω).

(The last equality follows from formulas (1) and (2).) Consequently,

〈Pσg,w〉0,σ = 〈Pσg,w〉0,σ for all w ∈W1,2
0,σ(Ω).

Hence Pσg and Pσg represent the same element of W−1,2
0,σ (Ω). As Pσg ∈ L2

σ(Ω), Pσg
can also be considered to be an element of L2

σ(Ω). In this sense, we observe that the
Helmholtz projection Pσ coincides with the restriction of Pσ to L2(Ω).
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An explicit expression of Pσ.

It is proven in [8] that Pσ = S−1
2 Q2, where

S2 : W−1,2
0,σ (Ω)→W−1,2

0 (Ω)|W1,2
0,σ(Ω)⊥ is a mapping, defined by the formula

S2(g) := gext + W1,2
0,σ(Ω)⊥ for g ∈W−1,2

0,σ (Ω).

gext . . . an extension of the functional g (acting on W1,2
0,σ(Ω) to a functional (acting on

W1,2
0 (Ω). (The extension exists due to the Hahn–Banach theorem.) One can show that

S2(g) is independent of a concrete choice of the extension gext.

S2 is an isometric isomorphism of W−1,2
0,σ (Ω) onto W−1,2

0 (Ω)|W1,2
0,σ(Ω)⊥, see [8].

Q2 : W−1,2
0 (Ω) →W−1,2

0 (Ω)|W1,2
0,σ(Ω)⊥ is the so called quotient mapping, defined by the

formula
Q2(f) := f + W1,2

0,σ(Ω)⊥ for f ∈W−1,2
0 (Ω).
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2. The Navier–Stokes initial–boundary value problem and its weak formulation

Recall that Ω is a domain in R3, T > 0. We denote QT := Ω × (0, T ) and ΓT :=
∂Ω× (0, T ).

A classical form of the Navier-Stokes IBVP. The Navier-Stokes IBVP (i.e. initial–
boundary value problem) is given by the equations

∂tu + u · ∇u +∇p = ν∆u + f in QT , (3)

divu = 0 in QT , (4)

the boundary condition
u = 0 on ΓT (5)

and the initial condition
u = u0 in Ω× {0}. (6)

The unknowns are u (velocity) and p (pressure). Function f represents an external body
force and ν is the kinematic coefficient of viscosity. It is supposed to be a positive con-
stant.
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A priori estimates. Assume that u is a solution of the problem (3)–(6), as smooth as we
need. Multiply equation (6) by u and integrate in Ω. We get:∫

Ω

∂tu · u dx =

∫
Ω

∂t
1

2
(u · u) dx =

1

2

∫
Ω

∂t |u|2 dx =
1

2

d

dt

∫
Ω

|u|2 dx,∫
Ω

u · ∇u · u dx =

∫
Ω

uj (∂jui)ui dx =

∫
Ω

uj ∂j

(1

2
uiui

)
dx

= −
∫

Ω

(∂juj)
1

2
uiui dx = 0,∫

Ω

∇p · u dx =

∫
Ω

(∂ip)ui dx = −
∫

Ω

p (∂iui) dx = −
∫

Ω

p divu dx = 0,∫
Ω

∆u · u dx =

∫
Ω

(∂k∂kui)ui dx = −
∫

Ω

(∂kui) (∂kui) dx = −
∫

Ω

|∇u|2 dx.

Hence we obtain

1

2

d

dt

∫
Ω

|u|2 dx + ν

∫
Ω

|∇u|2 dx =

∫
Ω

f · u dx. (7)
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Assume, for simplicity, that domain Ω is bounded. In this case, the norms ‖ . ‖1,2 and
‖∇. ‖2 are equivalent in W1,2

0,σ(Ω).

Treating the right hand side as the duality 〈f ,u〉0, we can estimate it:〈
f ,u
〉

0
≤ ‖f‖−1,2 ‖u‖1,2 ≤ c1 ‖f‖−1,0 ‖∇u‖2 ≤

ν

2
‖∇u‖2

2 +
c2

1

2ν
‖f‖2

−1,2.

Substituting this to (7), we get

1

2

d

dt
‖u(t)‖2

2 +
ν

2
‖∇u(t)‖2

2 ≤
c2

1

2ν
‖f‖2

−1,2,

‖u(t)‖2
2 + ν

∫ t

0

‖∇u(τ)‖2
2 dτ ≤ c2

1

ν

∫ t

0

‖f(τ)‖2
−1,2 dτ ≤ c2

1

ν

∫ T

0

‖f(τ)‖2
−1,2 dτ =: M.

This implies: ‖u(t)‖2 ≤
√
M for all t ∈ (0, T ), (8)∫ T

0

‖∇u(τ)‖2
2 dτ ≤ M. (9)

These inequalities indicate which are the reasonable spaces for a weak solution:
u ∈ L∞(0, T ; L2

σ(Ω)) (from (8)) and u ∈ L2(0, T ; W1,2
0,σ(Ω)) (from (9)).
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The 1st weak formulation of the Navier-Stokes IBVP (3)–(6).

Given u0 ∈ L2
σ(Ω) and f ∈ L2(0, T ; W−1,2

0 (Ω)). A function u ∈ L∞(0, T ; L2
σ(Ω)) ∩

L2(0, T ; W1,2
0,σ(Ω)) is said to be a weak solution to the problem (3)–(6) if∫ T

0

∫
Ω

[
−u · ∂tφ+ ν∇u : ∇φ+ u · ∇u · φ

]
dx dt

=

∫
Ω

u0 · φ(x, 0) dx +

∫ T

0

〈f ,φ〉0 dt (10)

for all φ ∈ C∞
(
[0, T ]; W1,2

0,σ(Ω)
)

such that φ(T ) = 0.

Equation (10) follows from (3)–(6) if one formally multiplies equation (3) by the test
function φ, applies the integration by parts and uses the boundary condition (5) and the
initial condition (6).

As the integral of ∇p · φ vanishes, the pressure p does not explicitly appear in (10).
However, one can show that a certain pressure (at least as a distribution) can always be
assigned to every weak solution. (See the section on the associated pressure.)
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The 2nd weak formulation of the Navier–Stokes IBVP (3)–(6).

We define the operatorsA : W1,2
0 (Ω)→W−1,2

0 (Ω) and B :
[
W1,2

0 (Ω)
]2 →W−1,2

0 (Ω) by
the equations〈

Av, z
〉

0
:=

∫
Ω

∇v : ∇z dx for v, z ∈W1,2
0 (Ω),〈

B(v,w), z
〉

0
:=

∫
Ω

v · ∇w · z dx for v,w, z ∈W1,2
0 (Ω).

Operator A is bounded and 1–1. It is related to operator Aσ, introduced in Lecture 2,
through the formula Aσ = PσA.

The bilinear operator B satisfies

‖B(v,w)‖−1,2 = sup
z∈W1,2

0 (Ω), z 6=0

|〈B(v,w), z〉Ω|
‖z‖1,2

= sup
z∈W1,2

0 (Ω), z 6=0

|(v · ∇w, z)2|
‖z‖1,2

≤ sup
z∈W1,2

0 (Ω), z 6=0

‖v‖1/2
2 ‖v‖

1/2
6 ‖∇w‖2 ‖z‖6

‖z‖1,2

≤ c ‖v‖1/2
2 ‖∇v‖

1/2
2 ‖∇w‖2. (11)
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Let u be a weak solution of the IBVP (3)–(6) in the sense of the 1st definition. It follows
from the boundedness of A from W1,2

0,σ(Ω) to W−1,2
0,σ (Ω) and estimates (11) that

Au ∈ L2(0, T ; W−1,2
0 (Ω)) and B(u,u) ∈ L4/3(0, T ; W−1,2

0 (Ω)). (12)

Considering φ in (10) in the form φ(x, t) = w(x)ϑ(t) where w ∈ W1,2
0,σ(Ω) and ϑ ∈

C∞0 ((0, T )), we deduce that u satisfies the equation

d

dt
(u,w)2 + ν

〈
Au,w

〉
0

+
〈
B(u,u),w

〉
0

= 〈f ,w〉0 a.e. in (0, T ), (13)

where the derivative of (u,ϕ)2 means the derivative in the sense of distributions.

It follows from (12) that 〈Au,w〉0 ∈ L2(0, T ) and 〈B(u,u),w〉0 ∈ L4/3(0, T ). Since
〈f ,w〉0 ∈ L2(0, T ), we obtain from (13) that

d

dt
(u,w)2 (the distributional derivative) ∈ L4/3(0, T ).

Hence (u,w)2 is a.e. in [0, T ) equal to a continuous function and the weak solution u is
(after a possible redefinition on a set of measure zero) a weakly continuous function from
[0, T ) to L2

σ(Ω).
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Now, we deduce that u satisfies the initial condition (6) in this sense:

(u,w)2

∣∣
t=0

= (u0,w)2 (14)

for all w ∈W1,2
0,σ(Ω).

We come to the 2nd weak formulation of the IBVP (3)–(6):

Given u0 ∈ L2
σ(Ω) and f ∈ L2(0, T ; W−1,2

0 (Ω)). Find u ∈ L∞(0, T ; L2
σ(Ω)) ∩

L2(0, T ; W1,2
0,σ(Ω)), called the weak solution, such that u satisfies the equation

d

dt
(u,w)2 + ν

〈
Au,w

〉
0

+
〈
B(u,u),w

〉
0

= 〈f ,w〉0 a.e. in (0, T ) (10)

and the initial condition
(u,w)2

∣∣
t=0

= (u0,w)2 (11)

for all w ∈W1,2
0,σ(Ω).

We have shown that if u is a weak solution of the IBVP (3)–(6) in the sense of the 1st
definition then it also satisfies the 2nd definition.
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One can also show the opposite, i.e. if u satisfies the 2nd definition then it also satisfies
the 1st definition.

For that purpose, it is sufficient to take into account that any test function φ in (10)
can be approximated with an arbitrarily small error (measured in the norm of C1

(
[0, T ];

W1,2
0,σ(Ω)

)
) by a finite linear combination of functions of the type

w(x)ϑ(t),

where w ∈ W1,2
0,σ(Ω) and ϑ ∈ C∞([0, T ]), ϑ(T ) = 0, and that each such pair w, ϑ

satisfies the equation∫ T

0

[
−(u,w)2 ϑ

′(t) + ν 〈Au,w〉0 ϑ(t) + 〈B(u,u),w〉0 ϑ(t)
]

dt

= (u0,w)2 ϑ(0) +

∫ T

0

〈f ,w〉0 ϑ(t) dt,

which follows from (13).
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An important lemma. Before we proceed with another weak formulation of the IBVP
(3)–(6), we present a lemma, which coincides with Lemma III.1.1 in [10]:

Lemma 2. Let X be a Banach space with the dual X∗, 〈 . , . 〉 be the duality between
X∗ and X, −∞ < a < b < ∞ and u, g ∈ L1(a, b; X). Then the following three
conditions are equivalent:

1) u is a.e. in (a, b) equal to a primitive function of g, which means that

u(t) = ξ +

∫ t

a

g(s) ds for some ξ ∈ X and a.a. t ∈ (a, b),

2)
∫ b

a

ϑ′(t)u(t) dt = −
∫ b

a

ϑ(t)g(t) dt for all ϑ ∈ C∞0 ((a, b)),

3)
d

dt
〈η,u〉 = 〈η,g〉 in the sense of distributions in (a, b) for each η ∈ X∗.

If the conditions 1) – 3) are fulfilled then u is a.e. in (a, b) equal to a continuous
function from [a, b] to X.
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Note that if functions u and g are related as in item 2) then g is called the distributional
derivative of u with respect to t and it is usually denoted by u′.

The 3rd weak formulation of the Navier-Stokes IBVP (3)–(6).

Equation (13) can also be written in the equivalent form

d

dt
(u,w)2 + ν

〈
Aσu,w

〉
0,σ

+
〈
PσB(u,u),w

〉
0,σ

=
〈
Pσ f ,w

〉
0,σ
. (15)

Let us denote by (u′)σ the distributional derivative with respect to t of u, as a function
from (0, T ) to W−1,2

0,σ (Ω).

Applying Lemma 2 (with X = W−1,2
0,σ (Ω) and X∗ = W1,2

0,σ(Ω)), we deduce that equation
(15) is equivalent to

(u′)σ + νAσu + PσB(u,u) = Pσ f , (16)

which is an equation in W−1,2
0,σ (Ω), satisfied a.e. in the time interval (0, T ). Due to (12),

(u′)σ ∈ L4/3(0, T ; W−1,2
0,σ (Ω)). Hence u coincides a.e. in (0, T ) with a continuous func-

tion from [0, T ) to W−1,2
0,σ (Ω). We obtain the 3rd equivalent definition of a weak solution

to the IBVP (3)–(6):

17



Given u0 ∈ L2
σ(Ω) and f ∈ L2(0, T ; W−1,2

0 (Ω)). Function u ∈ L∞(0, T ; L2
σ(Ω)) ∩

L2(0, T ; W1,2
0,σ(Ω)) is called a weak solution to the IBVP (3)–(6) if u satisfies the

equation
(u′)σ + νAσu + PσB(u,u) = Pσ f , (13)

a.e. in the interval (0, T ) and the initial condition

u
∣∣
t=0

= u0, (6)

where u|t=0 is the value of the aforementioned continuous function at time t = 0.

We have explained that if u is a weak solution in the sense of the 2nd definition then it
satisfies the 3rd definition. The validity of the opposite implication can be verified by
means of Lemma 2.

Remark. We have shown that u coincides a.e. in (0, T ) with a continuous function from
[0, T ) to W−1,2

0,σ (Ω). This, however, does not imply that u coincides a.e. in (0, T ) with a
continuous function from [0, T ) to W−1,2

0 (Ω).
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(It is because (u′)σ is the distributional derivative with respect to t of u, as a function
from (0, T ) to W−1,2

0,σ (Ω), and not the distributional derivative with respect to t of u, as a
function from (0, T ) to W−1,2

0 (Ω).)

As it is important to distinguish between these two derivatives, we use the different nota-
tion: while the first derivative is denoted by (u′)σ, the second is denoted just by u′. We
can formally write: (u′)σ = Pσu′.

3. Existence of a Leray–Hopf weak solution to the Navier–Stokes IBVP (3)–(6)

Theorem 1 (Leray 1934, Hopf 1951, et al). There exists at least one weak solution
u of the Navier–Stokes IBVP (3)–(6). The solution satisfies the energy inequality

‖u( . , t)‖2
2 + 2ν

∫ t

0

‖∇u( . , τ)‖2
2 dτ ≤ ‖u0‖2

2 + 2

∫ t

0

〈
f(τ), u( . τ)

〉
0

dτ (17)

for all t ∈ [0, T ), and
lim
t→0+

‖u( . , t)− u0‖2 = 0. (18)
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4. Principles of the proof of Theorem 1

Recall that Aσ is a self-adjoint positive operator in L2
σ(Ω). Assume in this section, for

simplicity, that domain Ω is bounded and Lipschitzian. Then W1,2
0,σ(Ω) ↪→↪→ L2

σ(Ω).
Consequently, Aσ is an operator with compact resolvent.

In this case, the spectrum of Aσ consists of an increasing sequence of infinitely many
isolated positive eigenvalues, each of whose has a finite multiplicity. (See Lemma 10 in
Lecture 2.) The eigenvalues can be ordered to a sequence

λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ . . .

so that each eigenvalue λ appears in the sequence as many times, as is the multiplicity of
λ. The corresponding eigenfunctions

ϕ1, ϕ2, ϕ3, . . .

can be chosen so that they form a complete ortho-normal system in L2
σ(Ω).

For n ∈ N, put Vn := L{ϕ1, ϕ2, . . . , ϕn} (the linear hull of ϕ1,ϕ2, . . . ,ϕn).
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1) Galerkin’s approximations

For n ∈ N, let us construct an approximation un in the form un(t) =
n∑
j=1

αj(t)ϕj
so that un satisfies

d

dt
(un,w)2 + ν

(
Aσun,w

)
2

+
〈
PσB(un,un),w

〉
0,σ

= 〈Pσf ,w〉0,σ (19)

for all w ∈ Vn. This is equivalent to
d

dt
(un,ϕi)2 + ν

(
Aσun,ϕi

)
2

+
〈
PσB(un,un),ϕi

〉
0,σ

= 〈Pσf ,ϕi〉0,σ
for i = 1, 2, . . . , n. Using the ortho-normality of ϕ1,ϕ2,ϕ3, . . . and the identities
Aσun =

∑n
i=1 αiϕi =

∑n
i=1 λiαiϕi, we obtain

α̇i + νλiαi +
n∑

k,l=1

αk αl
〈
PσB(ϕk,ϕl),ϕi

〉
0,σ

= 〈Pσf ,ϕi〉0,σ for i = 1, 2, . . . , n.

(20)
This is a system of n ODE’s for the unknown coefficients α1(t), . . . , αn(t). The system
is solved with the initial conditions

αi(0) = (u0,ϕi)2 i = 1, . . . , n. (21)
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2) A priori estimates and existence of the Galerkin approximation un

Multiply i–th equation by αi and sum for i = 1, . . . , n:

d

dt

1

2

n∑
i=1

α2
i + ν

n∑
i=1

λiα
2
i =

n∑
i=1

αi
〈
Pσf ,ϕi

〉
0,σ

=
〈
Pσf ,

n∑
i=1

αiϕi

〉
0,σ

≤ ‖Pσf‖−1,2;σ

∥∥∥ n∑
i=1

αiϕi

∥∥∥
1,2
≤ c ‖f‖−1,2

∥∥∥∇ n∑
i=1

αiϕi

∥∥∥
2

= c ‖f‖−1,2

[( n∑
i=1

αi∇ϕi,
n∑
j=1

αj∇ϕj
)

2

] 1
2

= c ‖f‖−1,2

[ n∑
i=1

n∑
j=1

αiαj 〈Aσui,uj〉
] 1

2

= c ‖f‖−1,2

[ n∑
i=1

α2
iλi

] 1
2

≤ ν

2

n∑
i=1

λiα
2
i +

c

ν
‖f‖2

−1,2,

where c = c(Ω). Integrating from 0 to t and multiplying by 2, we get

22



n∑
i=1

α2
i (t) + ν

∫ t

0

n∑
i=1

λiα
2
i (τ) dτ ≤ c

∫ t

0

‖f‖2
−1,2 dτ +

n∑
i=1

α2
i (0),

n∑
i=1

α2
i (t) + ν

∫ t

0

n∑
i=1

λiα
2
i (τ) dτ ≤ C

∫ t

0

‖f‖2
−1,2 dτ + ‖u0‖2

2, (22)

‖un(t)‖2
2 + ν

∫ t

0

‖∇un(τ)‖2
2 dτ ≤ c

∫ t

0

‖f‖2
−1,2 dτ + ‖u0‖2

2. (23)

One can deduce from these estimates that the initial–value problem (20), (21) has a solu-
tion α1, . . . , αn on (0, T ). The solution satisfies inequality (22) for all t ∈ (0, T ). Hence
the approximate solution un satisfies inequality (23) for all t ∈ (0, T ).

Note that returning to the first line on the previous page, we also obtain

d

dt

1

2
‖un‖2

2 + ν ‖∇un‖2
2 =

〈
Pσf ,un

〉
0,σ
,

‖un(t)‖2
2 + 2ν

∫ t

0

‖∇un(τ)‖2
2 dτ ≤ 2

∫ t

0

〈
Pσf ,un

〉
0,σ

dτ + ‖u0‖2
2. (24)
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3) Convergent subsequences of {un}

Inequality (24) provides uniform estimates of un in L∞(0, T ; L2
σ(Ω)) and in L2(0, T ;

W1,2
0,σ(Ω)). Hence there exists a sub–sequence of {un} (denoted again by {un}) and

u ∈ L∞(0, T ; L2
σ(Ω)) ∩ L2(0, T ; W1,2

0,σ(Ω)) such that

un −→ u weakly–* in L∞(0, T ; L2
σ(Ω)), (25)

un −→ u weakly in L2(0, T ; W1,2
0,σ(Ω)). (26)

In order to proceed, we shall also need an information on a strong convergence of the
sequence {un} in some space. Recall the equation

d

dt
(un,w)2 + ν

(
Aσun,w

)
2

+
〈
PσB(un,un),w

〉
0,σ

= 〈Pσf ,w〉0,σ (16)

for all w ∈ Vn. As we already know that u̇n(t) ≡
∑n

i=1 α̇i(t)ϕi exists, as a function
from (0, T ) to Vn, at all points t ∈ (0, T ), we can also write equation (19) in the form

(u̇n,w)2 + ν
(
Aσun,w

)
2

+
〈
PσB(un,un),w

〉
0,σ

= 〈Pσf ,w〉0,σ. (16)

Since Vn ↪→ W1,2
0,σ(Ω) ↪→ L2

σ(Ω) ↪→ W−1,2
0,σ (Ω), we may also treat u̇n as an element of

W−1,2
0,σ (Ω). Its norm can be estimated:
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‖u̇n‖−1,2;σ = sup
w∈W1,2

0,σ(Ω), w 6=0

|〈u̇n,w〉0,σ |
‖w‖1,2

= sup
w∈W1,2

0,σ(Ω), w 6=0

|(u̇n,w)2 |
‖w‖1,2

= sup
w∈Vn, w 6=0

|(u̇n,w)2 |
‖w‖1,2

= sup
w∈Vn, w 6=0

∣∣〈−Aσun − PσB(un,un) + Pσf ,w
〉

0,σ

∣∣
‖w‖1,2

≤ ‖Aσun‖−1,2;σ + ‖PσB(un,un)‖−1,2;σ + ‖Pσf‖−1,2;σ

= ‖Aσun‖−1,2;σ + ‖PσB(un,un)‖−1,2;σ + ‖Pσf‖−1,2;σ

≤ ‖∇un‖2 + c ‖B(un,un)‖−1,2 + ‖f‖−1,2

≤ ‖∇un‖2 + c ‖∇un‖3/2
2 ‖un‖

1/2
2 + c ‖f‖−1,2.

(The estimate of ‖B(un,un)‖−1,2 holds due to (11).)

From this, we observe that the sequence {u̇n} is uniformly bounded in the space
L4/3(0, T ; W−1,2

0,σ (Ω)).
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The next lemma is often called the Lions–Aubin lemma. (See e.g. Lions [7] or Temam
[10].)

Lemma 3. Let X0, X, X1 be three Banach spaces such that X0 and X1 are reflexive
and X0 ↪→↪→ X ↪→ X1. Let 0 < T <∞, 1 < α1 <∞, 1 < α2 <∞. Denote

Y :=
{
z ∈ Lα0(0, T ; X0), ż ∈ Lα1(0, T ; X1)

}
the Banach space with the norm ‖z‖Y := ‖z‖Lα0(0,T ;X0) + ‖ż‖Lα1(0,T ;X1).

Then Y ↪→↪→ Lα0(0, T ; X) (i.e. the injection of Y into Lα0(0, T ; X) is compact.

We use the lemma with X0 = W1,2
0,σ(Ω), X = L2

σ(Ω), X1 = W−1,2
0,σ (Ω), α0 = 2, α1 = 4

3 .

As {un} is a bounded sequence in Y , it is compact in L2(0, T ; L2
σ(Ω)). Hence there exists

a sub–sequence (denoted again {un}) that, in addition to (25) and (26), satisfies

un −→ u strongly in L2(0, T ; L2
σ(Ω)). (27)
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4) Verification that u satisfies equation (15)

Equation (19) means that∫ T

0

∫
Ω

[
−un ·w ϑ̇+ ν∇un : ∇w ϑ+ un · ∇un ·w ϑ

]
dx dt

=

∫ T

0

〈
Pσf ,w

〉
0,σ
ϑ dt+ ϑ(0)

∫
Ω

u0 ·w dx (28)

for all w = w(x) ∈ Vn and all ϑ = ϑ(t) ∈ C∞0 ([0, T )). Particularly, (28) also holds for
all w ∈ Vm, where m ≤ n. Assume, for a while, that w ∈ Vm is fixed. Using all the
types (25), (26), (27) of convergence of un to u, one can pass to the limit (for n→∞) in
(28) and show that∫ T

0

∫
Ω

[
−u ·w ϑ̇+ ν∇u : ∇w ϑ+ u · ∇u ·w ϑ

]
dx dt

=

∫ T

0

〈
f ,w

〉
0,σ
ϑ dt+ ϑ(0)

∫
Ω

u0 ·w dx (29)

for all w = w(x) ∈ Vm and all ϑ = ϑ(t) ∈ C∞0 ([0, T )). Passing now to the limit for
m → ∞, we deduce that (29) holds for all w ∈W1,2

0,σ(Ω) and all functions ϑ. Now, it is
equivalent to (15).
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5) The energy inequality

Recall the inequality (24):

‖un(t)‖2
2 + 2ν

∫ t

0

‖∇un(τ)‖2
2 dτ ≤ 2

∫ t

0

〈
Pσf ,un

〉
0,σ

dτ + ‖u0‖2
2.

The limit of the right hand side (for n→∞) is

= 2

∫ t

0

〈
Pσf(τ),u

〉
0,σ

dτ + ‖u0‖2
2 = 2

∫ t

0

〈
f(τ),u

〉
0

dτ + ‖u0‖2
2.

The limit inferior of the left hand side (for n→∞) is

≥ ‖u(t)‖2
2 + 2ν

∫ t

0

‖∇un(τ)‖2
2 dτ.

This yields the energy inequality

‖u(t)‖2
2 + 2ν

∫ t

0

‖∇u(τ)‖2
2 dτ ≤ ‖u0‖2

2 + 2

∫ t

0

〈
f(τ), u(τ)

〉
0

dτ. (17)
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6) The strong right L2–continuity of u at time t = 0

The energy inequality implies that

lim sup
t→0+

‖u(t)‖2
2 ≤ ‖u0‖2

2 .

On the other hand, as u is weakly continuous from [0, T ) to L2
σ(Ω), we have

lim inf
t→0+

‖u(t)‖2
2 ≥ ‖u0‖2

2 .

These inequalities yield
lim
t→0+

‖u(t)‖2
2 = ‖u0‖2

2 .

This identity, together with the weak L2–continuity, enable us to conclude that

lim
t→0+

‖u(t)− u0‖2
2 = 0.

It means that u(t)→ u0 in L2
σ(Ω) for t→ 0+. �
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