An Introduction to Mathematical Modelling in Fluid Mechanics and Theory of the Navier-Stokes Equations

Jiří Neustupa

Mathematical Institute of the Czech Academy of Sciences

Lecture 2:

The Stokes equations, the Stokes operator

(weak and strong solutions of the Stokes problem, basic properties of the Stokes operator)

Yonsei University, Seoul, December 2019

Contents

1. Some function spaces	. 3
2. The Stokes problem	. 7
3. Operator \mathcal{A}_{σ}	. 9
4. The Stokes operator	16
5. More on the steady Stokes problem	23
References	27

1. Some function spaces

Let Ω be a domain in \mathbb{R}^3 . We denote vector functions and spaces of vector functions by boldface letters.

- C[∞]_{0,σ}(Ω)... the linear space of all infinitely differentiable divergence–free vector functions in Ω with a compact support in Ω,
- $\mathbf{L}^2_{\sigma}(\Omega) \dots$ the closure of $\mathbf{C}^{\infty}_{0,\sigma}$ in $\mathbf{L}^2(\Omega)$,
- $\mathbf{W}_{0,\sigma}^{1,2}(\Omega) := \mathbf{W}_0^{1,2}(\Omega) \cap \mathbf{L}_{\sigma}^2(\Omega),$
- $\mathbf{W}_{0,\sigma}^{-1,2}(\Omega)$... the dual to $\mathbf{W}_{0,\sigma}^{1,2}(\Omega)$,
- $\langle ., . \rangle_{0,\sigma} \dots$ the duality between elements of $\mathbf{W}_{0,\sigma}^{-1,2}(\Omega)$ and $\mathbf{W}_{0,\sigma}^{1,2}(\Omega)$.

Important properties of $L^2_{\sigma}(\Omega)$ **.** 1) *Functions from* $L^2_{\sigma}(\Omega)$ *have the divergence (in the sense of distributions) equal to zero in* Ω *.*

Proof. Let us denote by $\langle \langle ., . \rangle \rangle_{\Omega}$ the action of a distribution in Ω on a function from $C_0^{\infty}(\Omega)$ or $\mathbf{C}_0^{\infty}(\Omega)$. Let $\mathbf{v} \in \mathbf{L}_{\sigma}^2(\Omega)$. Then there exists a sequence $\{\mathbf{v}_n\}$ in $\mathbf{C}_{0,\sigma}^{\infty}(\Omega)$, such

that $\mathbf{v}_n \to \mathbf{v}$ (for $n \to \infty$) in the norm of $\mathbf{L}^2(\Omega)$. Let $\varphi \in C_0^{\infty}(\Omega)$. We have

$$\left\langle \left\langle \operatorname{div} \mathbf{v}, \varphi \right\rangle \right\rangle_{\Omega} = -\left\langle \left\langle \mathbf{v}, \nabla \varphi \right\rangle \right\rangle_{\Omega} = -\int_{\Omega} \mathbf{v} \cdot \nabla \varphi \, \mathrm{d} \mathbf{x} = -\lim_{n \to \infty} \int_{\Omega} \mathbf{v}_n \cdot \nabla \varphi \, \mathrm{d} \mathbf{x}$$
$$= \lim_{n \to \infty} \int_{\Omega} \operatorname{div} \mathbf{v}_n \varphi \, \mathrm{d} \mathbf{x} = 0.$$

2) Functions from $\mathbf{L}^2_{\sigma}(\Omega)$ have the normal component on $\partial\Omega$ equal to zero in a certain generalized sense of traces.

The explanation follows from the next lemma, see [2] or [3]:

Lemma 1. Let Ω be a locally Lipschitz domain in \mathbb{R}^3 and $\mathbf{L}^2_{\text{div}}(\Omega) := \{\mathbf{v} \in \mathbf{L}^2(\Omega); \text{ div } \mathbf{v} \in L^2(\Omega)\}$. There exists a continuous mapping $\gamma_n : \mathbf{L}^2_{\text{div}}(\Omega) \to W^{-1/2,2}(\partial\Omega)$ such that $\gamma_n(\mathbf{v}) = \mathbf{v} \cdot \mathbf{n}|_{\partial\Omega}$ for $\mathbf{v} \in \mathbf{C}^{\infty}(\overline{\Omega})$.

3) $\mathbf{L}^{2}_{\sigma}(\Omega)$ can be identified with a subspace of $\mathbf{W}^{-1,2}_{0,\sigma}(\Omega)$ so that for $\mathbf{v} \in \mathbf{L}^{2}_{\sigma}(\Omega)$ and $\mathbf{w} \in \mathbf{W}^{1,2}_{0,\sigma}(\Omega)$, we put $\langle \mathbf{v}, \mathbf{w} \rangle_{0,\sigma} := (\mathbf{v}, \mathbf{w})_{2}$. Then $\mathbf{W}^{1,2}_{0,\sigma}(\Omega) \hookrightarrow \mathbf{L}^{2}_{\sigma}(\Omega) \hookrightarrow \mathbf{W}^{-1,2}_{0,\sigma}(\Omega)$.

The Helmholtz decomposition of $L^2(\Omega)$.

Lemma 2. Let Ω be any domain in \mathbb{R}^3 . Then $\mathbf{L}^2_{\sigma}(\Omega)^{\perp} = \mathbf{G}_2(\Omega) := \{ \mathbf{w} \in \mathbf{L}^2(\Omega); \mathbf{w} = \nabla \varphi \text{ for some } \varphi \in W^{1,2}_{loc}(\Omega) \}.$ Consequently, $\mathbf{L}^2(\Omega) = \mathbf{L}^2_{\sigma}(\Omega) \oplus \mathbf{G}_2(\Omega),$ where $\mathbf{L}^2_{\sigma}(\Omega)$ and $\mathbf{G}_2(\Omega)$ are closed orthogonal subspaces of $\mathbf{L}^2(\Omega)$.

Proof. Only the inclusion \supset . (See e.g. [2] or [3] or [6] for the opposite inclusion.) Thus, in order to show that $\mathbf{L}^2_{\sigma}(\Omega)^{\perp} \supset \mathbf{G}_2(\Omega)$, assume that $\nabla \varphi$ is an arbitrary element of $\mathbf{G}^2(\Omega)$. We want to show that $\nabla \varphi \in \mathbf{L}^2_{\sigma}(\Omega)^{\perp}$, which means that $(\mathbf{v}, \nabla \varphi)_2 = 0$ for all $\mathbf{v} \in \mathbf{L}^2_{\sigma}(\Omega)$. As $\mathbf{C}^{\infty}_{0,\sigma}(\Omega)$ is dense in $\mathbf{L}^2_{\sigma}(\Omega)$, it suffices to show that $(\mathbf{v}, \nabla \varphi)_2 = 0$ for all $\mathbf{v} \in \mathbf{C}^{\infty}_{0,\sigma}(\Omega)$. Thus, let $\mathbf{v} \in \mathbf{C}^{\infty}_{0,\sigma}(\Omega)$. Then we have

$$(\mathbf{v}, \nabla \varphi)_2 = \int_{\Omega} \mathbf{v} \cdot \nabla \varphi \, \mathrm{d}\mathbf{x} = \int_{\partial \Omega} (\mathbf{v} \cdot \mathbf{n}) \varphi \, \mathrm{d}S - \int_{\Omega} (\mathrm{div} \, \mathbf{v}) \varphi \, \mathrm{d}\mathbf{x} = 0.$$

Denote by P_{σ} , respectively Q_{σ} , the orthogonal projection of $\mathbf{L}^{2}(\Omega)$ onto $\mathbf{L}^{2}_{\sigma}(\Omega)$, respectively $\mathbf{G}_{2}(\Omega)$. Projection P_{σ} is often called the *Helmholtz projection*.

Remark. Let $\mathbf{v} \in \mathbf{L}^2(\Omega)$. The Helmholtz decomposition of \mathbf{v} is: $\mathbf{v} = P_{\sigma}\mathbf{v} + \nabla\varphi$, where φ is a weak solution of the Neumann problem

$$\Delta \varphi = \operatorname{div} \mathbf{v} \quad \text{in } \Omega, \qquad \frac{\partial \varphi}{\partial \mathbf{n}} = \mathbf{v} \cdot \mathbf{n} \quad \text{on } \partial \Omega. \tag{1}$$

A weak solution: function $\varphi \in D^{1,2}(\Omega)$, satisfying

$$\int_{\Omega} \nabla \varphi \cdot \nabla \psi \, \mathrm{d} \mathbf{x} = \int_{\Omega} \mathbf{v} \cdot \nabla \psi \, \mathrm{d} \mathbf{x} \quad \text{for all } \psi \in D^{1,2}(\Omega).$$

 $(D^{1,2}(\Omega))$ denotes the homogeneous Sobolev space $\{w \in L^1_{loc}(\Omega); \nabla w \in \mathbf{L}^2(\Omega)\}$ with the norm $\|w\|_{D^{1,2}(\Omega)} := \|\nabla w\|_2$.)

Remark. The analogous Helmholtz decomposition $\mathbf{L}^{q}(\Omega) = \mathbf{L}^{q}_{\sigma}(\Omega) \oplus \mathbf{G}_{q}(\Omega)$ (for $1 < q < \infty$) is possible \iff the Neumann problem (1) has a weak solution φ in $D^{1,q}(\Omega) := \{w \in L^{1}_{loc}(\Omega); \nabla w \in \mathbf{L}^{q}(\Omega)\}$ for any $\mathbf{v} \in \mathbf{L}^{q}(\Omega)$.

2. The Stokes problem

Let Ω be a domain in \mathbb{R}^3 and T > 0. We denote $Q_T := \Omega \times (0, T)$ and $\Gamma_T := \partial \Omega \times (0, T)$.

The non-steady Stokes initial-boundary value problem. Given functions f (in Q_T) and u_0 (in Ω). The problem consists of the equations

$$\partial_t \mathbf{u} + \nabla p = \nu \Delta \mathbf{u} + \mathbf{f} \qquad \text{in } Q_T, \qquad (2)$$

$$\operatorname{div} \mathbf{u} = 0 \qquad \qquad \operatorname{in} Q_T, \qquad (3)$$

the boundary condition

$$\mathbf{u} = \mathbf{0} \qquad \qquad \text{on } \Gamma_T \qquad (4)$$

and the initial condition

Equation (2) follows from the Navier–Stokes equation if we neglect the nonlinear term $\mathbf{u} \cdot \nabla \mathbf{u}$.

Here, we do not specially deal with the non-steady Stokes problem, because we shall discuss in greater detail the non-steady Navier-Stokes problem in next lectures.

The steady Stokes boundary value problem. Given function f (in Ω). The problem consists of the equations

$$-\nu\Delta \mathbf{u} + \nabla p = \mathbf{f} \qquad \qquad \text{in } \Omega, \tag{6}$$

$$\operatorname{div} \mathbf{u} = 0 \qquad \qquad \operatorname{in} \Omega, \tag{7}$$

and the boundary condition

$$\mathbf{u} = \mathbf{0} \qquad \qquad \text{on } \partial\Omega. \tag{8}$$

We shall at first deal in greater detail with the steady problem (6)–(8).

A weak formulation of the steady Stokes problem (6)–(8). Let $\mathbf{f} \in \mathbf{W}_{0,\sigma}^{-1,2}(\Omega)$. Function $\mathbf{u} \in \mathbf{W}_{0,\sigma}^{1,2}(\Omega)$ is said to be a weak solution of the problem (6)–(8) if

$$\nu (\nabla \mathbf{u}, \nabla \mathbf{w})_2 \equiv \nu \int_{\Omega} \nabla \mathbf{u} : \nabla \mathbf{w} \, \mathrm{d}\mathbf{x} = \langle \mathbf{f}, \mathbf{w} \rangle_{0,\sigma} \quad \text{for all } \mathbf{w} \in \mathbf{W}_{0,\sigma}^{1,2}(\Omega).$$
(9)

Note that (9) formally follows from (6)–(8) if we multiply equation (6) by w and integrate in Ω .

3. Operator A_{σ}

Define a linear operator $\mathcal{A}_{\sigma}: \mathbf{W}_{0,\sigma}^{1,2}(\Omega) \to \mathbf{W}_{0,\sigma}^{-1,2}(\Omega)$ by the equation

$$\langle \mathcal{A}_{\sigma} \mathbf{v}, \mathbf{w} \rangle_{0,\sigma} = (\nabla \mathbf{v}, \nabla \mathbf{w})_2 \quad \text{for all } \mathbf{w} \in \mathbf{W}_{0,\sigma}^{1,2}(\Omega).$$

Now, we can write equivalently (9) in the form

$$\nu \mathcal{A}_{\sigma} \mathbf{u} = \mathbf{f}, \tag{10}$$

which is an equation in $\mathbf{W}_{0,\sigma}^{-1,2}(\Omega)$.

Basic properties of operator A_{σ} **:**

Lemma 3. $D(\mathcal{A}_{\sigma}) = \mathbf{W}_{0,\sigma}^{1,2}(\Omega)$

(This follows directly from the definition of A_{σ} .)

Lemma 4. Operator \mathcal{A}_{σ} is 1-1.

Proof. Denote by $N(\mathcal{A}_{\sigma})$ the null space of operator \mathcal{A}_{σ} . We need to show that $N(\mathcal{A}_{\sigma}) = \{\mathbf{0}\}$. Thus, let $\mathbf{v} \in N(\mathcal{A}_{\sigma})$. Then

$$(\nabla \mathbf{v}, \nabla \mathbf{w})_2 = 0$$
 for all $\mathbf{w} \in \mathbf{W}_{0,\sigma}^{1,2}(\Omega)$.

The choice $\mathbf{w} = \mathbf{v}$ yields: $\|\nabla \mathbf{v}\|_2 = 0$, which implies that $\mathbf{v} = \mathbf{0}$.

Lemma 5. Operator \mathcal{A}_{σ} is bounded.

Proof. The boundedness of \mathcal{A}_{σ} (as an operator from $\mathbf{W}_{0,\sigma}^{1,2}(\Omega)$ to $\mathbf{W}_{0,\sigma}^{-1,2}(\Omega)$ follows from these identities and inequality:

$$\|\mathcal{A}_{\sigma}\mathbf{v}\|_{-1,2} = \sup_{\mathbf{w}\in\mathbf{W}_{0,\sigma}^{1,2}(\Omega), \ \mathbf{w}\neq\mathbf{0}} \frac{|\langle\mathcal{A}_{\sigma}\mathbf{v},\mathbf{w}\rangle_{0,\sigma}|}{\|\mathbf{w}\|_{1,2}} = \sup_{\mathbf{w}\in\mathbf{W}_{0,\sigma}^{1,2}(\Omega), \ \mathbf{w}\neq\mathbf{0}} \frac{|(\nabla\mathbf{v}, \nabla\mathbf{w})_{2}|}{\|\mathbf{w}\|_{1,2}} \leq \|\nabla\mathbf{v}\|_{2}.$$

Lemma 6. The range of \mathcal{A}_{σ} need not be generally the whole space $\mathbf{W}_{0,\sigma}^{-1,2}(\Omega)$.

Proof. Operator \mathcal{A}_{σ} is closed because it is a bounded operator and its domain is the whole space $\mathbf{W}_{0,\sigma}^{1,2}(\Omega)$. Hence $\mathcal{A}_{\sigma}^{-1}$ is also closed.

By contradiction: Assume that $R(\mathcal{A}_{\sigma}) \equiv D(\mathcal{A}_{\sigma}^{-1}) = \mathbf{W}_{0,\sigma}^{-1,2}(\Omega)$. Then operator $\mathcal{A}_{\sigma}^{-1}$ is bounded (by the closed graph theorem).

Choose $\mathbf{z}_n \in \mathbf{W}_{0,\sigma}^{1,2}(\Omega)$ so that $\|\nabla \mathbf{z}_n\|_2 \to 0$ and $\|\mathbf{z}_n\|_2 \to 1$. (This choice is possible e.g. if Ω is an exterior domain or $\Omega = \mathbb{R}^3$.) Let $\mathbf{f}_n \in \mathbf{W}_{0,\sigma}^{-1,2}(\Omega)$ be defined by the equation

$$\langle \mathbf{f}_n, \mathbf{w} \rangle_{0,\sigma} := (\nabla \mathbf{z}_n, \nabla \mathbf{w})_2 + (\mathbf{z}_n, \mathbf{w})_2 \quad \text{for all } \mathbf{w} \in \mathbf{W}_{0,\sigma}^{1,2}(\Omega).$$

Then $\{\mathbf{f}_n\}$ is a bounded sequence in $\mathbf{W}_{0,\sigma}^{-1,2}(\Omega)$. Put $\mathbf{u}_n := \mathcal{A}_{\sigma}^{-1}\mathbf{f}_n$. It means that $\mathbf{f}_n = \mathcal{A}_{\sigma}\mathbf{u}_n$. Hence $\langle \mathbf{f}_n, \mathbf{w} \rangle_{0,\sigma} := (\nabla \mathbf{u}_n, \nabla \mathbf{w})_2 \quad \forall \mathbf{w} \in \mathbf{W}_{0,\sigma}^{1,2}(\Omega)$.

The last two equations (with $\mathbf{w} = \mathbf{z}_n$ yield

$$(\nabla \mathbf{z}_n, \nabla \mathbf{z}_n)_2 + (\mathbf{z}_n, \mathbf{z}_n)_2 = (\nabla \mathbf{u}_n, \nabla \mathbf{z}_n)_2 \leq \|\nabla \mathbf{u}_n\|_2 \|\nabla \mathbf{z}_n\|_2$$

The left hand side tends to one, while the right hand side tends to zero (for $n \to \infty$). This is the contradiction.

Lemma 7. The range of \mathcal{A}_{σ} need not generally contain $\mathbf{L}_{\sigma}^{2}(\Omega)$.

Proof. Assume, by contradiction, that $\mathbf{L}^2_{\sigma}(\Omega) \subset R(\mathcal{A}_{\sigma})$. Denote by A_{σ} the restriction of \mathcal{A}_{σ} to $\mathcal{A}^{-1}_{\sigma}(\mathbf{L}^2_{\sigma}(\Omega))$. In other words: $D(A_{\sigma}) = \{\mathbf{v} \in \mathbf{W}^{1,2}_{0,\sigma}(\Omega); \mathcal{A}_{\sigma}\mathbf{v} \in \mathbf{L}^2_{\sigma}(\Omega)\}$ and $A_{\sigma}\mathbf{v} = \mathcal{A}_{\sigma}\mathbf{v}$ for $\mathbf{v} \in D(A)$. Obviously, $R(A_{\sigma}) = \mathbf{L}^2_{\sigma}(\Omega)$.

Then $D(A_{\sigma}^{-1}) = \mathbf{L}_{\sigma}^{2}(\Omega)$ and $R(A_{\sigma}^{-1}) = D(A_{\sigma}) \subset \mathbf{W}_{0,\sigma}^{1,2}(\Omega)$.

Let us at first show that A_{σ}^{-1} is closed, as an operator from $\mathbf{L}_{\sigma}^{2}(\Omega)$ to $\mathbf{W}_{0,\sigma}^{1,2}(\Omega)$. In order to prove this, assume that $\{\mathbf{f}_{n}\}$ and $\{\mathbf{v}_{n}\}$ are sequences in $\mathbf{L}_{\sigma}^{2}(\Omega)$ and $\mathbf{W}_{0,\sigma}^{1,2}(\Omega)$, respectively, such that $\mathbf{f}_{n} \to \mathbf{f}$ in $\mathbf{L}_{\sigma}^{2}(\Omega)$, $\mathbf{v}_{n} \to \mathbf{v}$ in $\mathbf{W}_{0,\sigma}^{1,2}(\Omega)$ and $\mathbf{v}_{n} = A_{\sigma}^{-1}\mathbf{f}_{n}$. We want to show that $\mathbf{v} = A_{\sigma}^{-1}\mathbf{f}$, i.e. $A_{\sigma}\mathbf{v} = \mathbf{f}$. However,

$$\mathbf{f}_n \to \mathbf{f} \quad \text{in } \mathbf{L}^2_{\sigma}(\Omega) \quad \Longrightarrow \quad \mathbf{f}_n \to \mathbf{f} \quad \text{in } \mathbf{W}^{-1,2}_{0,\sigma}(\Omega),$$

and we obtain $\mathbf{v} = \mathcal{A}_{\sigma}^{-1}\mathbf{f}$ (which equals $A_{\sigma}^{-1}\mathbf{f}$) due to the closedness of the operator $\mathcal{A}_{\sigma}^{-1}$ from $\mathbf{W}_{0,\sigma}^{-1,2}(\Omega)$ to $\mathbf{W}_{0,\sigma}^{1,2}(\Omega)$.

As a closed operator, defined on the whole space $\mathbf{L}^2_{\sigma}(\Omega)$, A^{-1}_{σ} is bounded from $\mathbf{L}^2_{\sigma}(\Omega)$ to $\mathbf{W}^{1,2}_{0,\sigma}(\Omega)$ (by the closed graph theorem).

Choose $\{\mathbf{f}_n\}$ in $\mathbf{W}_{0,\sigma}^{1,2}(\Omega)$ so that $\|\mathbf{f}_n\|_2 \to 1$ and $\|\nabla \mathbf{f}_n\|_2 \to 0$. (A sequence with these properties exists e.g. if Ω is an exterior domain or $\Omega = \mathbb{R}^3$.)

Put $\mathbf{v}_n := A_{\sigma}^{-1} \mathbf{f}_n$. Then $A_{\sigma} \mathbf{v}_n = \mathbf{f}_n$, i.e. $\mathcal{A}_{\sigma} \mathbf{v}_n = \mathbf{f}_n$, which means:

$$(\nabla \mathbf{v}_n, \nabla \mathbf{w})_2 = \langle \mathbf{f}_n, \mathbf{w} \rangle_{0,\sigma} \equiv (\mathbf{f}_n, \mathbf{w})_2 \quad \text{for all } \mathbf{w} \in \mathbf{W}_{0,\sigma}^{1,2}(\Omega).$$

Using this with $\mathbf{w} = \mathbf{f}_n$, we get

$$\|\mathbf{f}_n\|_2^2 = (\nabla \mathbf{v}_n, \nabla \mathbf{f}_n)_2 \leq \|\nabla \mathbf{v}_n\|_2 \|\nabla \mathbf{f}_n\|_2.$$

The left hand side tends to 1 (for $n \to \infty$).

The right hand side tends to 0, because $\|\nabla \mathbf{f}_n\|_2 \to 0$ and the sequence $\{\mathbf{v}_n\}$ is bounded in $\mathbf{W}_{0,\sigma}^{1,2}(\Omega)$ (because $\{\mathbf{f}_n\}$ is bounded in $\mathbf{L}_{\sigma}^2(\Omega)$ and operator A_{σ}^{-1} is bounded from $\mathbf{L}_{\sigma}^2(\Omega)$ to $\mathbf{W}_{0,\sigma}^{1,2}(\Omega)$).

This is a contradiction.

Domain and range of operator A_{σ} **:**

Lemma 8. If
$$\Omega$$
 is bounded then $R(\mathcal{A}_{\sigma}) = \mathbf{W}_{0,\sigma}^{-1,2}(\Omega)$.

Proof. Since Ω is bounded, the scalar product $(\nabla \mathbf{v}, \nabla \mathbf{w})_2$ is equivalent to the scalar product $(\mathbf{v}, \mathbf{w})_{1,2}$ in $\mathbf{W}_{0,\sigma}^{1,2}(\Omega)$. Hence, given $\mathbf{f} \in \mathbf{W}_{0,\sigma}^{-1,2}(\Omega)$, there exists $\mathbf{v} \in \mathbf{W}_{0,\sigma}^{1,2}(\Omega)$ such that $\langle \mathbf{f}, \mathbf{w} \rangle_{0,\sigma} = (\nabla \mathbf{v}, \nabla \mathbf{w})_2$ for all $\mathbf{w} \in \mathbf{W}_{0,\sigma}^{1,2}(\Omega)$ (by the Riesz theorem). It means that $\mathbf{f} = \mathcal{A}_{\sigma} \mathbf{v}$ (the identity in $\mathbf{W}_{0,\sigma}^{-1,2}(\Omega)$).

Corollary 1. If Ω is bounded then $\mathcal{A}_{\sigma}^{-1}$ is bounded from $\mathbf{W}_{0,\sigma}^{-1,2}(\Omega)$ to $\mathbf{W}_{0,\sigma}^{1,2}(\Omega)$.

Denote by A_{σ} the part of operator \mathcal{A}_{σ} with the range $R(\mathcal{A}_{\sigma}) \cap \mathbf{L}^{2}_{\sigma}(\Omega)$. Thus, A_{σ} is the restriction of \mathcal{A}_{σ} to

$$D(A_{\sigma}) := \left\{ \mathbf{u} \in \mathbf{W}_{0,\sigma}^{1,2}(\Omega); \ \mathcal{A}_{\sigma}\mathbf{u} \in \mathbf{L}_{\sigma}^{2}(\Omega) \right\} = \mathcal{A}_{\sigma}^{-1}[R(\mathcal{A}_{\sigma}) \cap \mathbf{L}_{\sigma}^{2}(\Omega)].$$

Operator A_{σ} is an operator in $\mathbf{L}^{2}_{\sigma}(\Omega)$. It is often called the **Stokes operator.** We will treat it as an operator in $\mathbf{L}^{2}_{\sigma}(\Omega)$, i.e. the operator from $\mathbf{L}^{2}_{\sigma}(\Omega)$ to $\mathbf{L}^{2}_{\sigma}(\Omega)$, with the domain $D(A_{\sigma})$ and range $R(A_{\sigma})$, both subsets of $\mathbf{L}^{2}_{\sigma}(\Omega)$.

Some properties of operator A_{σ} **:** (see, e.g., [6])

Lemma 9. A_{σ} is a 1–1 positive and self-adjoint operator in $\mathbf{L}^2_{\sigma}(\Omega)$.

Proof. 1) A_{σ} is 1–1, because it is a restriction of A_{σ} , which is 1–1.

2) Operator A_{σ} is positive, because for all $\mathbf{v} \in D(A_{\sigma})$, $\mathbf{v} \neq \mathbf{0}$, we have

$$(A_{\sigma}\mathbf{v},\mathbf{v})_2 = (\nabla\mathbf{v},\nabla\mathbf{v})_2 = \|\nabla\mathbf{v}\|_2^2 > 0.$$

3) We prove that operator A_{σ} is closed. Let $\{\mathbf{v}_n\}$ and $\{\mathbf{f}_n\}$ be sequences in $D(A_{\sigma})$ and $\mathbf{L}^2_{\sigma}(\Omega)$, respectively, such that $A_{\sigma}\mathbf{v}_n = \mathbf{f}_n$ and $\mathbf{v}_n \to \mathbf{v}$, $\mathbf{f}_n \to \mathbf{f}$ in the norm of $\mathbf{L}^2_{\sigma}(\Omega)$. In order to show that A_{σ} is closed, we need to show that $\mathbf{v} \in D(A_{\sigma})$ and $A_{\sigma}\mathbf{v} = \mathbf{f}$. The equation $A_{\sigma}\mathbf{v}_n = \mathbf{f}_n$ means that

$$(\nabla \mathbf{v}_n, \nabla \mathbf{w})_2 = \langle \mathbf{f}_n, \mathbf{w} \rangle_{0,\sigma} = (\mathbf{f}_n, \mathbf{w})_2 \quad \text{for all } \mathbf{w} \in \mathbf{W}_{0,\sigma}^{1,2}(\Omega).$$
 (11)

If $\mathbf{w} \in \mathbf{W}_{0,\sigma}^{1,2}(\Omega) \cap \mathbf{W}^{2,2}(\Omega)$ the the left hand side equals

$$-(\mathbf{v}_n, \Delta \mathbf{w})_2 \longrightarrow -(\mathbf{v}, \Delta \mathbf{w})_2 = (\nabla \mathbf{v}, \nabla \mathbf{w})_2 \quad \text{for } n \to \infty$$

The right hand side of (11) tends to $(\mathbf{f}, \mathbf{w})_2$ (for $n \to \infty$). Hence

$$(\nabla \mathbf{v}, \nabla \mathbf{w})_2 = (\mathbf{f}, \mathbf{w})_2 \quad \text{for all } \mathbf{w} \in \mathbf{W}^{1,2}_{0,\sigma}(\Omega) \cap \mathbf{W}^{2,2}(\Omega).$$

As $\mathbf{W}_{0,\sigma}^{1,2}(\Omega) \cap \mathbf{W}^{2,2}(\Omega)$ is dense in $\mathbf{W}_{0,\sigma}^{1,2}(\Omega)$ the identity $(\nabla \mathbf{v}, \nabla \mathbf{w})_2 = (\mathbf{f}, \mathbf{w})_2$ holds for all $\mathbf{w} \in \mathbf{W}_{0,\sigma}^{1,2}(\Omega)$. This shows that $\mathbf{v} \in D(A_{\sigma})$ and $A_{\sigma}\mathbf{v} = \mathbf{f}$. Thus, we have proven that operator A_{σ} is closed.

4) Let us now show that operator A_{σ} is symmetric: let $\mathbf{v}, \mathbf{w} \in D(A_{\sigma})$ (which is dense in $\mathbf{L}^2_{\sigma}(\Omega)$). Then we have

$$(A_{\sigma}\mathbf{v},\mathbf{w})_2 = (\nabla\mathbf{v},\nabla\mathbf{w})_2 = (\nabla\mathbf{w},\nabla\mathbf{v})_2 = (A_{\sigma}\mathbf{w},\mathbf{v})_2 = (\mathbf{v},A_{\sigma}\mathbf{w})_2.$$

5) Since A_{σ} is a closed, positive and symmetric operator in $L^2_{\sigma}(\Omega)$, A_{σ} is self-adjoint. (See e.g. [4, Theorem V.3.16] or [1, Theorem 4.1.7].)

Lemma 10. The spectrum of A_{σ} is a closed subset of the real axis. Moreover, if domain Ω is bounded then the spectrum of A_{σ} consists of an increasing sequence of infinitely many isolated positive eigenvalues $\lambda_1, \lambda_2, \ldots$, such that $\lim_{n\to\infty} \lambda_n = \infty$. Each of the eigenvalues has a finite geometric multiplicity and corresponding eigenfunctions can be chosen so that they form a complete orthonormal system in $\mathbf{L}^2_{\sigma}(\Omega)$.

Proof. 1) The spectrum of A_{σ} is a closed subset of the real axis, because operator A_{σ} is symmetric.

2) We need to show that for each $\lambda \in \rho(A_{\sigma})$ (the resolvent set of A_{σ}), the resolvent operator $(A_{\sigma} - \lambda I)^{-1}$ is compact in $\mathbf{L}^{2}_{\sigma}(\Omega)$. Then the statements

- the spectrum of A_{σ} consists of an increasing sequence of infinitely many isolated eigenvalues $\lambda_1, \lambda_2, \lambda_3, \ldots$,
- each of the eigenvalues has a finite geometric multiplicity,
- corresponding eigenfunctions can be chosen so that they form a complete orthonormal system in L²_σ(Ω)

follow from the spectral theorem for self-adjoint compact operators (or self-adjoint operators with compact resolvent), see e.g. [1] or [4] or many other books on the spectral theory of linear operators.

The eigenvalues are positive, because operator A_{σ} is positive. Their number is infinite, because the space $\mathbf{L}^2_{\sigma}(\Omega)$ is infinite-dimensional. The eigenvalues $\{\lambda_n\}$ satisfy $\lim_{n\to\infty} \lambda_n = \infty$ due to two reasons: a) operator A_{σ} is unbounded, or b) the eigenvalues cannot cluster at any point of \mathbb{R} , because they are isolated and the spectrum is closed.

Thus, let us show A_{σ} is an operator with a compact resolvent. Let $\lambda \in \rho(A_{\sigma})$. Then $R(A_{\sigma} - \lambda I) = \mathbf{L}^2_{\sigma}(\Omega)$ and the operator $A_{\sigma} - \lambda I$ has a bounded inverse from $\mathbf{L}^2_{\sigma}(\Omega)$ to $\mathbf{L}^2_{\sigma}(\Omega)$. Let $\mathbf{f} \in \mathbf{L}^2_{\sigma}(\Omega)$. The equation

$$(A_{\sigma} - \lambda I)\mathbf{v} = \mathbf{f} \quad \dots \quad \mathbf{v} = (A_{\sigma} - \lambda I)^{-1}\mathbf{f}$$
(12)

implies that

$$\|\mathbf{v}\|_{2} = \|(A_{\sigma} - \lambda I)^{-1}\mathbf{f}\|_{2} \le c \|\mathbf{f}\|_{2},$$
(13)

where c depends only on λ . Equation (12) also means that

$$(\nabla \mathbf{v}, \nabla \mathbf{w})_2 = (\mathbf{f}, \mathbf{w})_2 + \lambda (\mathbf{v}, \mathbf{w})_2 \quad \text{for all } \mathbf{w} \in \mathbf{W}_{0,\sigma}^{1,2}(\Omega), \\ \|\nabla \mathbf{v}\|_2^2 = (\mathbf{f}, \mathbf{v})_2 + \lambda (\mathbf{v}, \mathbf{v})_2 \leq \|\mathbf{f}\|_2 \|\mathbf{v}\|_2 + |\lambda| \|\mathbf{v}\|_2^2 \leq c \|\mathbf{f}\|_2^2 + |\lambda| c^2 \|\mathbf{f}\|_2^2.$$

This, together with (13), shows that $(A_{\sigma} - \lambda I)^{-1}$ is a bounded operator from $\mathbf{L}^{2}_{\sigma}(\Omega)$ to $\mathbf{W}^{1,2}_{0,\sigma}(\Omega)$. Hence, due to the compact imbedding

$$\mathbf{W}_{0,\sigma}^{1,2}(\Omega) \hookrightarrow \mathbf{L}_{\sigma}^{2}(\Omega),$$

the resolvent operator $(A_{\sigma} - \lambda I)^{-1}$ is compact in $\mathbf{L}^2_{\sigma}(\Omega)$.

Lemma 11. If $\mathbf{v} \in \mathbf{W}_{0,\sigma}^{1,2}(\Omega) \cap \mathbf{W}^{2,2}(\Omega)$ then $A_{\sigma}\mathbf{v} = -P_{\sigma}\Delta\mathbf{v}$.

Proof. For
$$\mathbf{v} \in \mathbf{W}_{0,\sigma}^{1,2}(\Omega) \cap \mathbf{W}^{2,2}(\Omega)$$
 and any $\mathbf{w} \in \mathbf{W}_{0,\sigma}^{1,2}(\Omega)$, we have
 $(A_{\sigma}\mathbf{v},\mathbf{w})_2 = (\nabla \mathbf{v}, \nabla \mathbf{w})_2 = -(\Delta \mathbf{v}, \mathbf{w})_2.$

Since $\mathbf{W}_{0,\sigma}^{1,2}(\Omega)$ is dense in $\mathbf{L}_{\sigma}^{2}(\Omega)$, we also have

$$(A_{\sigma}\mathbf{v} + \Delta\mathbf{v}, \mathbf{w})_2 = 0$$
 for all $\mathbf{w} \in \mathbf{L}^2_{\sigma}(\Omega)$.

This shows that $A_{\sigma}\mathbf{v} + \Delta \mathbf{v} \perp \mathbf{L}_{\sigma}^{2}(\Omega)$ in $\mathbf{L}^{2}(\Omega)$, which means that $A_{\sigma}\mathbf{v} + \Delta \mathbf{v} \in \mathbf{G}_{2}(\Omega)$. Hence $P_{\sigma}(A_{\sigma}\mathbf{v} + \Delta \mathbf{v}) = \mathbf{0}$. Since $P_{\sigma}A_{\sigma}\mathbf{v} = A_{\sigma}\mathbf{v}$, we obtain: $A_{\sigma}\mathbf{v} = -P_{\sigma}\Delta\mathbf{v}$.

Lemma 12. If domain Ω is bounded then $R(A_{\sigma}) \equiv D(A_{\sigma}^{-1}) = \mathbf{L}_{\sigma}^{2}(\Omega)$ and operator A_{σ}^{-1} is bounded from $\mathbf{L}_{\sigma}^{2}(\Omega)$ to $\mathbf{W}_{0,\sigma}^{1,2}(\Omega)$.

Proof. Since $R(\mathcal{A}_{\sigma}) = \mathbf{W}_{0,\sigma}^{-1,2}(\Omega)$ (see Lemma 8) and $\mathbf{L}_{\sigma}^{2}(\Omega) \subset \mathbf{W}_{0,\sigma}^{-1,2}(\Omega)$, we have $R(\mathcal{A}_{\sigma}) = \mathbf{L}_{\sigma}^{2}(\Omega)$. (See also Fig. 2.) Hence $D(\mathcal{A}_{\sigma}^{-1}) = \mathbf{L}_{\sigma}^{2}(\Omega)$. We have shown in the

proof of Lemma 7 that in this case, the operator A_{σ}^{-1} is closed, as an operator from $\mathbf{L}_{\sigma}^{2}(\Omega)$ to $\mathbf{W}_{0,\sigma}^{1,2}(\Omega)$. The boundedness of A_{σ}^{-1} from $\mathbf{L}_{\sigma}^{2}(\Omega)$ to $\mathbf{W}_{0,\sigma}^{1,2}(\Omega)$ now follows from the closed graph theorem.

Lemma 13. If Ω is a bounded domain with the boundary of the class C^2 then $D(A_{\sigma}) = \mathbf{W}_{0,\sigma}^{1,2}(\Omega) \cap \mathbf{W}^{2,2}(\Omega), \ A_{\sigma} = -P_{\sigma}\Delta$ and $\|\mathbf{u}\|_{2,2} \leq c \|A_{\sigma}\mathbf{u}\|_{2}$ (14) for all $\mathbf{u} \in D(A_{\sigma})$.

Constant c in Lemma 13 depends only on domain Ω .

Lemma 13 shows that if Ω is a bounded "smooth" domain then operator A_{σ} has the so called **maximum regularity property.** This is a deep statement, see e.g. [2] or [5] or [6] for the proof.

5. More on the steady Stokes problem

A weak solution. Let $\mathbf{f} \in \mathbf{W}_{0,\sigma}^{-1,2}(\Omega)$. We already know from subsection 3 that the steady Stokes problem (6)–(8) is equivalent to the equation

$$\nu \mathcal{A}_{\sigma} \mathbf{u} = \mathbf{f} \tag{10}$$

in the space $\mathbf{W}_{0,\sigma}^{-1,2}(\Omega)$. A solution $\mathbf{u} \in \mathbf{W}_{0,\sigma}^{1,2}(\Omega)$ of equation (10) is called a *weak solution* (of the steady Stokes problem (6)–(8)).

- *If a solution exists then it is unique.* (See Lemma 4.)
- However, equation (10) generally need not have a solution. (See Lemma 6.)
- On the other hand, if domain Ω is bounded then the solution u ∈ W^{1,2}_{0,σ}(Ω) exists for any f ∈ W^{-1,2}_{0,σ}(Ω). (See Lemma 8.)

An associated pressure. Recall that equation (10) is equivalent to

$$\nu (\nabla \mathbf{u}, \nabla \mathbf{w})_2 \equiv \nu \int_{\Omega} \nabla \mathbf{u} : \nabla \mathbf{w} \, \mathrm{d} \mathbf{x} = \langle \mathbf{f}, \mathbf{w} \rangle_{0,\sigma} \quad \text{for all } \mathbf{w} \in \mathbf{W}_{0,\sigma}^{1,2}(\Omega).$$
(9)

Thus, if we consider only $\mathbf{w} \in \mathbf{C}_{0,\sigma}^{\infty}(\Omega)$ in (9), we can also write (9) in the form

$$\left\langle \left\langle \nu \Delta \mathbf{u} + \mathbf{f}, \, \mathbf{w} \right\rangle \right\rangle_{\Omega} = 0.$$

This equation shows that the distribution $\nu \Delta \mathbf{u} + \mathbf{f}$ vanishes on all functions from $\mathbf{C}_0^{\infty}(\Omega)$ that are divergence–free. The next lemma tells us which form has such a distribution.

Lemma 14. Let $\mathbf{F} = (F_1, F_2, F_3)$, where F_i (i = 1, 2, 3) are distributions in Ω . Then \mathbf{F} has the form $\mathbf{F} = \nabla p$ (where p is a distribution in Ω and ∇p is the distributional gradient) if and only if $\langle \langle \mathbf{F}, \mathbf{w} \rangle \rangle_{\Omega} = 0$ for all $\mathbf{w} \in \mathbf{C}_{0,\sigma}^{\infty}(\Omega)$.

The lemma coincides with Proposition I.1.1 in [7]. It comes from G. De Rham.

Applying Lemma 14 with $\mathbf{F} = \nu \Delta \mathbf{u} + \mathbf{f}$, we deduce that there exists a distribution p in Ω such that

$$\nu \Delta \mathbf{u} + \mathbf{f} = \nabla p.$$

This equation formally coincides with the steady Stokes equation (6). Here, it is satisfied in the sense of distributions in Ω . Distribution *p* is called an *associated pressure*.

A strong solution. If $\mathbf{f} \in \mathbf{L}^2_{\sigma}(\Omega)$ then the steady Stokes problem is equivalent to the equation

$$\nu A_{\sigma} \mathbf{u} = \mathbf{f},\tag{15}$$

which is now an equation in $L^2_{\sigma}(\Omega)$. A solution of this equation is called a *strong solution*.

Concerning the existence and uniqueness of a strong solution, the situation is similar as in the case of a weak solution:

- As $R(A_{\sigma})$ generally does not cover the whole space $\mathbf{L}^{2}_{\sigma}(\Omega)$ (see Fig. 3), equation (15) is not always solvable.
- If a solution exists then it is unique.

(This follows from the facts that A_{σ} is a restriction of \mathcal{A}_{σ} and operator \mathcal{A}_{σ} is 1–1, see Lemma 4.)

If domain Ω is bounded then R(A_σ) = L²_σ(Ω), which means that equation (15) is solvable for any f ∈ L²_σ(Ω).
(The identity R(A_σ) = L²_σ(Ω) follows from Lemma 8 and Fig. 2.)

• If domain Ω is bounded and its boundary $\partial\Omega$ is of the class C^2 then the solution **u** of equation (15) lies in $\mathbf{W}_{0,\sigma}^{1,2}(\Omega) \cap \mathbf{W}^{2,2}(\Omega)$. In this case, equation (15) can also be written in the form

$$-\nu P_{\sigma} \Delta \mathbf{u} = \mathbf{f}. \tag{16}$$

Since **f** is now supposed to be from $\mathbf{L}^2_{\sigma}(\Omega)$, it satisfies $\mathbf{f} = P_{\sigma}\mathbf{f}$. Hence equation (16) is equivalent to

$$P_{\sigma}(\nu\Delta \mathbf{u} + \mathbf{f}) = \mathbf{0},$$

which is an equation in $\mathbf{L}^2_{\sigma}(\Omega)$. Due to the validity of the Helmholtz decomposition of $\mathbf{L}^2(\Omega)$ (see subsection 1), there exists $\nabla p \in \mathbf{G}_2(\Omega)$ such that

$$\nu \Delta \mathbf{u} + \mathbf{f} = \nabla p,$$

which is again the steady Stokes equation (6). Now, it is an equation in the space $L^2(\Omega)$.

We observe, that under the formulated assumptions on **f** and Ω , the associated pressure p is a function from $L^1_{loc}(\Omega)$, such that $\nabla p \in \mathbf{L}^2(\Omega)$. The estimate (14) can be extended so that it also involves ∇p :

$$\|\mathbf{u}\|_{2,2} + \|\nabla p\|_2 \le c \|\mathbf{f}\|_2.$$
(17)

References

- [1] M. S. Birman, M. Z. Solomyak: *Spectral Theory of Self-Adjoint Operators in a Hilbert Space*. D. Reidel Publishing Company, Dordrecht–Boston–Lancaster–Tokyo 1987.
- [2] G. P. Galdi: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. 2nd edition, Springer 2011.
- [3] V. Girault, P.-A. Raviart: *Finite Element Methods for the Navier–Stokes Equations*. Springer–Verlag, Berlin–Heidelberg–Tokyo 1986.
- [4] T. Kato: Perturbation Theory for Linear Operators. Springer–Verlag, Berlin–Heidelberg 1995.
- [5] O. A. Ladyzhenskaya: *The Mathematical Theory of Viscous Incompressible Flow.* Gordon and Breach, New York 1963.
- [6] H. Sohr: *The Navier–Stokes Equations. An Elementary Functional Analytic Approach.* Birkhäuser Advanced Texts, Basel–Boston–Berlin 2001.
- [7] R. Temam: Navier-Stokes Equations. North-Holland, Amsterdam-New York-Oxford 1977.
- [8] W. Varnhorn: *The Stokes equations*. Mathematical Research, 76. Akademie–Verlag, Berlin 1994. ISBN: 3-05-501634-3.