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1. Some function spaces

Let Ω be a domain in R3. We denote vector functions and spaces of vector functions by
boldface letters.

• C∞0,σ(Ω) . . . the linear space of all infinitely differentiable divergence–free vector func-
tions in Ω with a compact support in Ω,

• L2
σ(Ω) . . . the closure of C∞0,σ in L2(Ω),

• W1,2
0,σ(Ω) := W1,2

0 (Ω) ∩ L2
σ(Ω),

• W−1,2
0,σ (Ω) . . . the dual to W1,2

0,σ(Ω),

• 〈 . , . 〉0,σ . . . the duality between elements of W−1,2
0,σ (Ω) and W1,2

0,σ(Ω).

Important properties of L2
σ(Ω). 1) Functions from L2

σ(Ω) have the divergence (in the
sense of distributions) equal to zero in Ω.

Proof. Let us denote by 〈〈 . , . 〉〉Ω the action of a distribution in Ω on a function from
C∞0 (Ω) or C∞0 (Ω). Let v ∈ L2

σ(Ω). Then there exists a sequence {vn} in C∞0,σ(Ω), such

3 / 27



that vn → v (for n→∞) in the norm of L2(Ω). Let ϕ ∈ C∞0 (Ω). We have〈〈
div v, ϕ

〉〉
Ω

= −
〈〈
v,∇ϕ

〉〉
Ω

= −
∫

Ω

v · ∇ϕ dx = − lim
n→∞

∫
Ω

vn · ∇ϕ dx

= lim
n→∞

∫
Ω

div vn ϕ dx = 0. �

2) Functions from L2
σ(Ω) have the normal component on ∂Ω equal to zero in a certain

generalized sense of traces.

The explanation follows from the next lemma, see [2] or [3]:

Lemma 1. Let Ω be a locally Lipschitz domain in R3 and L2
div(Ω) := {v ∈

L2(Ω); div v ∈ L2(Ω)}. There exists a continuous mapping γn : L2
div(Ω) →

W−1/2,2(∂Ω) such that γn(v) = v · n
∣∣
∂Ω

for v ∈ C∞(Ω).

3) L2
σ(Ω) can be identified with a subspace of W−1,2

0,σ (Ω) so that for v ∈ L2
σ(Ω) and

w ∈W1,2
0,σ(Ω), we put 〈v,w〉0,σ := (v,w)2. Then W1,2

0,σ(Ω) ↪→ L2
σ(Ω) ↪→W−1,2

0,σ (Ω).
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The Helmholtz decomposition of L2(Ω).

Lemma 2. Let Ω be any domain in R3. Then

L2
σ(Ω)⊥ = G2(Ω) :=

{
w ∈ L2(Ω); w = ∇ϕ for some ϕ ∈ W 1,2

loc (Ω)}.

Consequently,
L2(Ω) = L2

σ(Ω)⊕G2(Ω),

where L2
σ(Ω) and G2(Ω) are closed orthogonal subspaces of L2(Ω).

Proof. Only the inclusion ⊃. (See e.g. [2] or [3] or [6] for the opposite inclusion.) Thus,
in order to show that L2

σ(Ω)⊥ ⊃ G2(Ω), assume that∇ϕ is an arbitrary element of G2(Ω).
We want to show that ∇ϕ ∈ L2

σ(Ω)⊥, which means that (v,∇ϕ)2 = 0 for all v ∈ L2
σ(Ω).

As C∞0,σ(Ω) is dense in L2
σ(Ω), it suffices to show that (v,∇ϕ)2 = 0 for all v ∈ C∞0,σ(Ω).

Thus, let v ∈ C∞0,σ(Ω). Then we have

(v,∇ϕ)2 =

∫
Ω

v · ∇ϕ dx =

∫
∂Ω

(v · n) ϕ dS −
∫

Ω

(div v) ϕ dx = 0. �
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Denote by Pσ, respectively Qσ, the orthogonal projection of L2(Ω) onto L2
σ(Ω), respec-

tively G2(Ω). Projection Pσ is often called the Helmholtz projection.

Remark. Let v ∈ L2(Ω). The Helmholtz decomposition of v is: v = Pσv + ∇ϕ,
where ϕ is a weak solution of the Neumann problem

∆ϕ = div v in Ω,
∂ϕ

∂n
= v · n on ∂Ω. (1)

A weak solution: function ϕ ∈ D1,2(Ω), satisfying∫
Ω

∇ϕ · ∇ψ dx =

∫
Ω

v · ∇ψ dx for all ψ ∈ D1,2(Ω).

(D1,2(Ω) denotes the homogeneous Sobolev space {w ∈ L1
loc(Ω); ∇w ∈ L2(Ω)} with the

norm ‖w‖D1,2(Ω) := ‖∇w‖2.)

Remark. The analogous Helmholtz decomposition Lq(Ω) = Lqσ(Ω) ⊕Gq(Ω) (for 1 <
q < ∞) is possible⇐⇒ the Neumann problem (1) has a weak solution ϕ in D1,q(Ω) :=
{w ∈ L1

loc(Ω); ∇w ∈ Lq(Ω)} for any v ∈ Lq(Ω).
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2. The Stokes problem

Let Ω be a domain in R3 and T > 0. We denoteQT := Ω×(0, T ) and ΓT := ∂Ω×(0, T ).

The non–steady Stokes initial–boundary value problem. Given functions f (in QT )
and u0 (in Ω). The problem consists of the equations

∂tu +∇p = ν∆u + f in QT , (2)

divu = 0 in QT , (3)

the boundary condition
u = 0 on ΓT (4)

and the initial condition
u = u0 in Ω× {0}. (5)

Equation (2) follows from the Navier–Stokes equation if we neglect the nonlinear term
u · ∇u.

Here, we do not specially deal with the non–steady Stokes problem, because we shall
discuss in greater detail the non–steady Navier–Stokes problem in next lectures.
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The steady Stokes boundary value problem. Given function f (in Ω). The problem
consists of the equations

−ν∆u +∇p = f in Ω, (6)

divu = 0 in Ω, (7)

and the boundary condition
u = 0 on ∂Ω. (8)

We shall at first deal in greater detail with the steady problem (6)–(8).

A weak formulation of the steady Stokes problem (6)–(8). Let f ∈W−1,2
0,σ (Ω). Func-

tion u ∈W1,2
0,σ(Ω) is said to be a weak solution of the problem (6)–(8) if

ν (∇u,∇w)2 ≡ ν

∫
Ω

∇u : ∇w dx = 〈f ,w〉0,σ for all w ∈W1,2
0,σ(Ω). (9)

Note that (9) formally follows from (6)–(8) if we multiply equation (6) by w and integrate
in Ω.
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3. Operator Aσ

Define a linear operator Aσ : W1,2
0,σ(Ω)→W−1,2

0,σ (Ω) by the equation

〈Aσv,w〉0,σ = (∇v,∇w)2 for all w ∈W1,2
0,σ(Ω).

Now, we can write equivalently (9) in the form

νAσu = f , (10)

which is an equation in W−1,2
0,σ (Ω).

Basic properties of operator Aσ:

Lemma 3. D(Aσ) = W1,2
0,σ(Ω)

(This follows directly from the definition of Aσ.)
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Lemma 4. Operator Aσ is 1–1.

Proof. Denote by N(Aσ) the null space of operator Aσ. We need to show that N(Aσ) =
{0}. Thus, let v ∈ N(Aσ). Then

(∇v,∇w)2 = 0 for all w ∈W1,2
0,σ(Ω).

The choice w = v yields: ‖∇v‖2 = 0, which implies that v = 0. �

Lemma 5. Operator Aσ is bounded.

Proof. The boundedness of Aσ (as an operator from W1,2
0,σ(Ω) to W−1,2

0,σ (Ω) follows from
these identities and inequality:

‖Aσv‖−1,2 = sup
w∈W1,2

0,σ(Ω), w 6=0

|〈Aσv,w〉0,σ |
‖w‖1,2

= sup
w∈W1,2

0,σ(Ω), w 6=0

|(∇v, ∇w)2|
‖w‖1,2

≤ ‖∇v‖2.

�
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Lemma 6. The range of Aσ need not be generally the whole space W−1,2
0,σ (Ω).

Proof. OperatorAσ is closed because it is a bounded operator and its domain is the whole
space W1,2

0,σ(Ω). Hence A−1
σ is also closed.

By contradiction: Assume that R(Aσ) ≡ D(A−1
σ ) = W−1,2

0,σ (Ω). Then operator A−1
σ is

bounded (by the closed graph theorem).

Choose zn ∈ W1,2
0,σ(Ω) so that ‖∇zn‖2 → 0 and ‖zn‖2 → 1. (This choice is possible

e.g. if Ω is an exterior domain or Ω = R3.) Let fn ∈W−1,2
0,σ (Ω) be defined by the equation

〈fn,w〉0,σ := (∇zn,∇w)2 + (zn,w)2 for all w ∈W1,2
0,σ(Ω).

Then {fn} is a bounded sequence in W−1,2
0,σ (Ω). Put un := A−1

σ fn. It means that fn =
Aσun. Hence 〈fn,w〉0,σ := (∇un,∇w)2 ∀w ∈W1,2

0,σ(Ω).

The last two equations (with w = zn yield

(∇zn,∇zn)2 + (zn, zn)2 = (∇un,∇zn)2 ≤ ‖∇un‖2 ‖∇zn‖2

The left hand side tends to one, while the right hand side tends to zero (for n→∞). This
is the contradiction. �
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Lemma 7. The range of Aσ need not generally contain L2
σ(Ω).

Proof. Assume, by contradiction, that L2
σ(Ω) ⊂ R(Aσ). Denote by Aσ the restriction

of Aσ to A−1
σ (L2

σ(Ω)). In other words: D(Aσ) = {v ∈W1,2
0,σ(Ω); Aσv ∈ L2

σ(Ω)} and
Aσv = Aσv for v ∈ D(A). Obviously, R(Aσ) = L2

σ(Ω).

Then D(A−1
σ ) = L2

σ(Ω) and R(A−1
σ ) = D(Aσ) ⊂W1,2

0,σ(Ω).

Let us at first show that A−1
σ is closed, as an operator from L2

σ(Ω) to W1,2
0,σ(Ω). In order to

prove this, assume that {fn} and {vn} are sequences in L2
σ(Ω) and W1,2

0,σ(Ω), respectively,
such that fn → f in L2

σ(Ω), vn → v in W1,2
0,σ(Ω) and vn = A−1

σ fn. We want to show that
v = A−1

σ f , i.e. Aσv = f . However,

fn → f in L2
σ(Ω) =⇒ fn → f in W−1,2

0,σ (Ω),

and we obtain v = A−1
σ f (which equals A−1

σ f ) due to the closedness of the operator A−1
σ

from W−1,2
0,σ (Ω) to W1,2

0,σ(Ω).

As a closed operator, defined on the whole space L2
σ(Ω), A−1

σ is bounded from L2
σ(Ω) to

W1,2
0,σ(Ω) (by the closed graph theorem).
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Choose {fn} in W1,2
0,σ(Ω) so that ‖fn‖2 → 1 and ‖∇fn‖2 → 0. (A sequence with these

properties exists e.g. if Ω is an exterior domain or Ω = R3.)

Put vn := A−1
σ fn. Then Aσvn = fn, i.e. Aσvn = fn, which means:

(∇vn,∇w)2 = 〈fn,w〉0,σ ≡ (fn,w)2 for all w ∈W1,2
0,σ(Ω).

Using this with w = fn, we get

‖fn‖2
2 = (∇vn,∇fn)2 ≤ ‖∇vn‖2 ‖∇fn‖2.

The left hand side tends to 1 (for n→∞).

The right hand side tends to 0, because ‖∇fn‖2 → 0 and the sequence {vn} is bounded
in W1,2

0,σ(Ω) (because {fn} is bounded in L2
σ(Ω) and operator A−1

σ is bounded from L2
σ(Ω)

to W1,2
0,σ(Ω)).

This is a contradiction. �
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Domain and range of operator Aσ :

W1,2
0,σ(Ω) W1,2

0,σ(Ω)

L2
σ(Ω) W−1,2

0,σ (Ω)

R(Aσ)

Aσ

D(Aσ) = W1,2
0,σ(Ω)

Fig. 1
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W1,2
0,σ(Ω) W1,2

0,σ(Ω)

Fig. 2

L2
σ(Ω)

W−1,2
0,σ (Ω) = R(Aσ)

Aσ

D(Aσ) = W1,2
0,σ(Ω)

The special case of
a bounded domain Ω:

Lemma 8. If Ω is bounded then R(Aσ) = W−1,2
0,σ (Ω).

Proof. Since Ω is bounded, the scalar product (∇v,∇w)2 is equivalent to the scalar
product (v,w)1,2 in W1,2

0,σ(Ω). Hence, given f ∈ W−1,2
0,σ (Ω), there exists v ∈ W1,2

0,σ(Ω)

such that 〈f ,w〉0,σ = (∇v,∇w)2 for all w ∈W1,2
0,σ(Ω) (by the Riesz theorem). It means

that f = Aσv (the identity in W−1,2
0,σ (Ω)). �

Corollary 1. If Ω is bounded then A−1
σ is bounded from W−1,2

0,σ (Ω) to W1,2
0,σ(Ω).
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4. The Stokes operator Aσ

D(Aσ) ⊂W1,2
0,σ(Ω)

Aσ

R(Aσ)

L2
σ(Ω)

L2
σ(Ω)

W1,2
0,σ(Ω)

W1,2
0,σ(Ω)

Fig. 3

W−1,2
0,σ (Ω)

Denote by Aσ the part of operator Aσ with the range R(Aσ) ∩ L2
σ(Ω). Thus, Aσ is the

restriction of Aσ to

D(Aσ) :=
{
u ∈W1,2

0,σ(Ω); Aσu ∈ L2
σ(Ω)

}
= A−1

σ [R(Aσ) ∩ L2
σ(Ω)].

Operator Aσ is an operator in L2
σ(Ω). It is often called the Stokes operator. We will treat

it as an operator in L2
σ(Ω), i.e. the operator from L2

σ(Ω) to L2
σ(Ω), with the domainD(Aσ)

and range R(Aσ), both subsets of L2
σ(Ω).
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Some properties of operator Aσ: (see, e.g., [6])

Lemma 9. Aσ is a 1–1 positive and self-adjoint operator in L2
σ(Ω).

Proof. 1) Aσ is 1–1, because it is a restriction of Aσ, which is 1–1.

2) Operator Aσ is positive, because for all v ∈ D(Aσ), v 6= 0, we have

(Aσv,v)2 = (∇v,∇v)2 = ‖∇v‖2
2 > 0.

3) We prove that operator Aσ is closed. Let {vn} and {fn} be sequences in D(Aσ) and
L2
σ(Ω), respectively, such that Aσvn = fn and vn → v, fn → f in the norm of L2

σ(Ω).
In order to show that Aσ is closed, we need to show that v ∈ D(Aσ) and Aσv = f . The
equation Aσvn = fn means that

(∇vn,∇w)2 = 〈fn,w〉0,σ = (fn,w)2 for all w ∈W1,2
0,σ(Ω). (11)

If w ∈W1,2
0,σ(Ω) ∩W2,2(Ω) the the left hand side equals

−(vn,∆w)2 −→ −(v,∆w)2 = (∇v,∇w)2 for n→∞.
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The right hand side of (11) tends to (f ,w)2 (for n→∞). Hence

(∇v,∇w)2 = (f ,w)2 for all w ∈W1,2
0,σ(Ω) ∩W2,2(Ω).

As W1,2
0,σ(Ω)∩W2,2(Ω) is dense in W1,2

0,σ(Ω) the identity (∇v,∇w)2 = (f ,w)2 holds for
all w ∈W1,2

0,σ(Ω). This shows that v ∈ D(Aσ) and Aσv = f . Thus, we have proven that
operator Aσ is closed.

4) Let us now show that operator Aσ is symmetric: let v, w ∈ D(Aσ) (which is dense
in L2

σ(Ω)). Then we have

(Aσv,w)2 = (∇v,∇w)2 = (∇w,∇v)2 = (Aσw,v)2 = (v, Aσw)2.

5) Since Aσ is a closed, positive and symmetric operator in L2
σ(Ω), Aσ is self-adjoint.

(See e.g. [4, Theorem V.3.16] or [1, Theorem 4.1.7].) �

Lemma 10. The spectrum ofAσ is a closed subset of the real axis. Moreover, if domain
Ω is bounded then the spectrum of Aσ consists of an increasing sequence of infinitely
many isolated positive eigenvalues λ1, λ2, . . . , such that limn→∞ λn = ∞. Each of
the eigenvalues has a finite geometric multiplicity and corresponding eigenfunctions
can be chosen so that they form a complete orthonormal system in L2

σ(Ω).
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Proof. 1) The spectrum of Aσ is a closed subset of the real axis, because operator Aσ is
symmetric.

2) We need to show that for each λ ∈ ρ(Aσ) (the resolvent set of Aσ), the resolvent
operator (Aσ − λI)−1 is compact in L2

σ(Ω). Then the statements

• the spectrum ofAσ consists of an increasing sequence of infinitely many isolated eigen-
values λ1, λ2, λ3, . . . ,

• each of the eigenvalues has a finite geometric multiplicity,

• corresponding eigenfunctions can be chosen so that they form a complete orthonormal
system in L2

σ(Ω)

follow from the spectral theorem for self-adjoint compact operators (or self-adjoint op-
erators with compact resolvent), see e.g. [1] or [4] or many other books on the spectral
theory of linear operators.

The eigenvalues are positive, because operator Aσ is positive. Their number is infi-
nite, because the space L2

σ(Ω) is infinite–dimensional. The eigenvalues {λn} satisfy
limn→∞ λn =∞ due to two reasons: a) operatorAσ is unbounded, or b) the eigenvalues
cannot cluster at any point of R, because they are isolated and the spectrum is closed.
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Thus, let us show Aσ is an operator with a compact resolvent. Let λ ∈ ρ(Aσ). Then
R(Aσ − λI) = L2

σ(Ω) and the operator Aσ − λI has a bounded inverse from L2
σ(Ω) to

L2
σ(Ω). Let f ∈ L2

σ(Ω). The equation

(Aσ − λI)v = f . . . v = (Aσ − λI)−1f (12)

implies that
‖v‖2 = ‖(Aσ − λI)−1f‖2 ≤ c ‖f‖2, (13)

where c depends only on λ. Equation (12) also means that

(∇v,∇w)2 = (f ,w)2 + λ (v,w)2 for all w ∈W1,2
0,σ(Ω),

‖∇v‖2
2 = (f ,v)2 + λ (v,v)2 ≤ ‖f‖2 ‖v‖2 + |λ| ‖v‖2

2 ≤ c ‖f‖2
2 + |λ| c2 ‖f‖2

2.

This, together with (13), shows that (Aσ − λI)−1 is a bounded operator from L2
σ(Ω) to

W1,2
0,σ(Ω). Hence, due to the compact imbedding

W1,2
0,σ(Ω) ↪→↪→ L2

σ(Ω),

the resolvent operator (Aσ − λI)−1 is compact in L2
σ(Ω). �
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Lemma 11. If v ∈W1,2
0,σ(Ω) ∩W2,2(Ω) then Aσv = −Pσ∆v.

Proof. For v ∈W1,2
0,σ(Ω) ∩W2,2(Ω) and any w ∈W1,2

0,σ(Ω), we have

(Aσv,w)2 = (∇v,∇w)2 = −(∆v,w)2.

Since W1,2
0,σ(Ω) is dense in L2

σ(Ω), we also have

(Aσv + ∆v,w)2 = 0 for all w ∈ L2
σ(Ω).

This shows that Aσv + ∆v ⊥ L2
σ(Ω) in L2(Ω), which means that Aσv + ∆v ∈ G2(Ω).

Hence Pσ(Aσv + ∆v) = 0. Since PσAσv = Aσv, we obtain: Aσv = −Pσ∆v. �

Lemma 12. If domain Ω is bounded then R(Aσ) ≡ D(A−1
σ ) = L2

σ(Ω) and operator
A−1
σ is bounded from L2

σ(Ω) to W1,2
0,σ(Ω).

Proof. Since R(Aσ) = W−1,2
0,σ (Ω) (see Lemma 8) and L2

σ(Ω) ⊂ W−1,2
0,σ (Ω), we have

R(Aσ) = L2
σ(Ω). (See also Fig. 2.) Hence D(A−1

σ ) = L2
σ(Ω). We have shown in the
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proof of Lemma 7 that in this case, the operator A−1
σ is closed, as an operator from L2

σ(Ω)
to W1,2

0,σ(Ω). The boundedness of A−1
σ from L2

σ(Ω) to W1,2
0,σ(Ω) now follows from the

closed graph theorem. �

Lemma 13. If Ω is a bounded domain with the boundary of the class C2 then
D(Aσ) = W1,2

0,σ(Ω) ∩W2,2(Ω), Aσ = −Pσ∆ and

‖u‖2,2 ≤ c ‖Aσu‖2 (14)

for all u ∈ D(Aσ).

Constant c in Lemma 13 depends only on domain Ω.

Lemma 13 shows that if Ω is a bounded “smooth” domain then operator Aσ has the so
called maximum regularity property. This is a deep statement, see e.g. [2] or [5] or [6]
for the proof.
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5. More on the steady Stokes problem

A weak solution. Let f ∈ W−1,2
0,σ )(Ω). We already know from subsection 3 that the

steady Stokes problem (6)–(8) is equivalent to the equation

νAσu = f (10)

in the space W−1,2
0,σ (Ω). A solution u ∈W1,2

0,σ(Ω) of equation (10) is called a weak solution
(of the steady Stokes problem (6)–(8)).

• If a solution exists then it is unique. (See Lemma 4.)

• However, equation (10) generally need not have a solution. (See Lemma 6.)

• On the other hand, if domain Ω is bounded then the solution u ∈ W1,2
0,σ(Ω) exists for

any f ∈W−1,2
0,σ (Ω). (See Lemma 8.)

An associated pressure. Recall that equation (10) is equivalent to

ν (∇u,∇w)2 ≡ ν

∫
Ω

∇u : ∇w dx = 〈f ,w〉0,σ for all w ∈W1,2
0,σ(Ω). (9)
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Thus, if we consider only w ∈ C∞0,σ(Ω) in (9), we can also write (9) in the form〈〈
ν∆u + f , w

〉〉
Ω

= 0.

This equation shows that the distribution ν∆u+ f vanishes on all functions from C∞0 (Ω)
that are divergence–free. The next lemma tells us which form has such a distribution.

Lemma 14. Let F = (F1, F2, F3), where Fi (i = 1, 2, 3) are distributions in Ω. Then
F has the form F = ∇p (where p is a distribution in Ω and ∇p is the distributional
gradient) if and only if 〈〈F,w〉〉Ω = 0 for all w ∈ C∞0,σ(Ω).

The lemma coincides with Proposition I.1.1 in [7]. It comes from G. De Rham.

Applying Lemma 14 with F = ν∆u+ f , we deduce that there exists a distribution p in Ω
such that

ν∆u + f = ∇p.
This equation formally coincides with the steady Stokes equation (6). Here, it is satisfied
in the sense of distributions in Ω. Distribution p is called an associated pressure.
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A strong solution. If f ∈ L2
σ(Ω) then the steady Stokes problem is equivalent to the

equation
νAσu = f , (15)

which is now an equation in L2
σ(Ω). A solution of this equation is called a strong solution.

Concerning the existence and uniqueness of a strong solution, the situation is similar as
in the case of a weak solution:

• As R(Aσ) generally does not cover the whole space L2
σ(Ω) (see Fig. 3), equation (15)

is not always solvable.

• If a solution exists then it is unique.

(This follows from the facts that Aσ is a restriction of Aσ and operator Aσ is 1–1, see
Lemma 4.)

• If domain Ω is bounded then R(Aσ) = L2
σ(Ω), which means that equation (15) is

solvable for any f ∈ L2
σ(Ω).

(The identity R(Aσ) = L2
σ(Ω) follows from Lemma 8 and Fig. 2.)
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• If domain Ω is bounded and its boundary ∂Ω is of the class C2 then the solution u
of equation (15) lies in W1,2

0,σ(Ω) ∩W2,2(Ω). In this case, equation (15) can also be
written in the form

−νPσ∆u = f . (16)

Since f is now supposed to be from L2
σ(Ω), it satisfies f = Pσf . Hence equation (16) is

equivalent to
Pσ
(
ν∆u + f

)
= 0,

which is an equation in L2
σ(Ω). Due to the validity of the Helmholtz decomposition of

L2(Ω) (see subsection 1), there exists∇p ∈ G2(Ω) such that

ν∆u + f = ∇p,

which is again the steady Stokes equation (6). Now, it is an equation in the space L2(Ω).

We observe, that under the formulated assumptions on f and Ω, the associated pressure
p is a function from L1

loc(Ω), such that∇p ∈ L2(Ω). The estimate (14) can be extended
so that it also involves∇p:

‖u‖2,2 + ‖∇p‖2 ≤ c ‖f‖2. (17)
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