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cubic NLS in 3D

NLS equation with linear potential{
i∂tu+Hu = |u|2u, (t, x) ∈ R × R3,

u(0) = u0 ∈ H1(R3),
(NLS)

where
• V (x) : R3 → R is a linear potential.
• H = −∆ + V has one simple negative eigenvalue e0 < 0.

Goal

Global behavior of solutions with small mass and energy less than
the first excited states.
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The potential-less case: V = 0

Let us recall the results on the potential-less case V = 0:{
i∂tu− ∆u = |u|2u, (t, x) ∈ R × R3,

u(0) = u0 ∈ H1(R3).
(NLS0)

Recent progress

The study begins for solutions close to special solutions such
as the zero and the ground state Q. Recently, more general
solutions are treated with a help of variational argument.

As a result, several sharp criterion are obtained in terms of the
conserved quantities.

In the sequel, Q denotes the positive radial solution to

−∆Q+Q = Q3.
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Previous results for the case V = 0

Functional

M(ϕ) :=

∫
R3

1

2
|ϕ(x)|2dx, (mass)

H0(ϕ) :=

∫
R3

1

2
|∇ϕ(x)|2dx,

G(ϕ) :=

∫
R3

1

4
|ϕ(x)|4dx.

E0(ϕ) := H0(ϕ) − G(ϕ). (energy)

K0,2(ϕ) := ∂α=1(E0(e
3
2
αϕ(eα·)))

= 2H0(ϕ) − 3G(ϕ).
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Previous results for the case V = 0

Holmer-Roudenko, Duyckaerts-Holmer-Roudenko, Akahori-Nawa

The set

B := {ϕ ∈ H1(R3) | M(ϕ)E0(ϕ) < M(Q)E0(Q)} ⊂ H1

splits into two disjoint subsets according to the sign of K0,2.

If K0,2(u0) < 0 then the solution u(t) blows up for both
time directions (in finite or infinite time).

If K0,2(u0) ⩾ 0 then the solution u(t) is global and scatters
for both time directions.

Remark [Duyckaerts-Roudenko, Nakanishi-Schlag]
Global dynamics in M(u)E0(u) < M(Q)E0(Q) + ε
(cf. 9-set theorem).
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Scattering and Space-time boundedness

We say a solution u(t) to (NLS0) scatters forward in time if
∃u+ ∈ H1 s.t.

u(t) → e−it∆u+ in H1

as t → ∞.

Equivalent characterization (cf. Kato ‘94)

A solution u(t) to (NLS0) scatters forward in time iff

∥u∥L8
t ([0,Tmax),L4

x(R3)) < ∞

(global existence Tmax = ∞ also follows).
Linear solutions satisfy this bound (cf. Strichartz est.)
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Motivation

stability of ground state Q

In most cases, the global dynamics for large data is studied for
equation with unstable ground state. However, in view of the
physical model, it is natural to have a stable ground state.

As for the standard NLS

i∂tu− ∆u = |u|p−1u, (t, x) ∈ R × Rd,

the ground state Q is stable if and only if p < 1 + 4/d.
The equation in this range is called mass-subcritical.

However, the analysis of global dynamics for mass-subcritical
equations is hard due to the fact that the scaling critical space
has negative regularity. (e.g. smallness in H1 implies nothing
on the global dynamics).
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previous attempts

Global dynamics on mass-subcritical (NLS0)

Weighted spaces
M. ’14, M. ’15, Killip-M.-Murphy-Visan ’17;

Sobolev space with negative regularity and radial symmetry
Killip-M.-Murphy-Visan ’19;

Fourier Lubesgue and Bourgain-Morrey spaces
Segata-M. ’18, M. ’16
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Today’s model

Stable ground states and a linear potential

The situation is also created by adding a linear potential.
Due to the presence of a linear potential which yields a negative
eigenvalue of H, (NLS) has stable ground states and unstable first
excited states (at least under small mass constraint)

(NLS0) (V = 0) (NLS) (V ̸= 0)

0 → stable ground states
Q → unstable first excited states
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cubic NLS in 3D

Let us consider our model:{
i∂tu+Hu = |u|2u, (t, x) ∈ R × R3,

u(0) = u0 ∈ H1(R3),
(NLS)

Related works

Gustafson-Nakanishi-Tsai ‘04,
Scattering to a ground state for small (in H1) solutions

Nakanishi ‘17, ‘17
Global dynamics of solutions with small mass and energy less
than that for the first excited states +ε, under radial
symmetry.

Many other results without a negative eigenvalue.
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Assumption on the potential

For simplicity, we assume the following:

Assumption

V is a Schwartz function such that

(A1) H = −∆ + V has one negative simple eigenvalue e0 < 0.
There is no other eigenvalues. 0 is not a resonance of H;

(A2) V (0) = infx∈R3 V (x) < 0.

Remark
• Let ψ ∈ S(R3) be a positive radially decreasing nonzero
function. Then, aψ satisfies the condition for a negative constant
a in a suitable range,
• (A2) is essentially the choice of the coordinate.
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Functional

We introduce functionals involving the linear potential V .

Functional

HV (ϕ) :=

∫
R3

(
1

2
|∇ϕ(x)|2 +

1

2
V (x)|ϕ(x)|2

)
dx,

また,
EV (ϕ) := HV (ϕ) − G(ϕ) (energy)

KV,2(ϕ) := ∂α=1(EV (e
3
2
αϕ(eα·)))

= 2H0(ϕ) − 3G(ϕ) −
∫
R3

1

2
x · ∇V (x)|ϕ(x)|2dx.

The notation is consistent: They coincide with those with
subscription “0” when V = 0.
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Ground state energy E0(µ) and First excited energy E1(µ)

A set of solitions

S := {ϕ ∈ H1(R3) | ∃ω ∈ R s.t. (H + ω)ϕ = |ϕ|2ϕ}.

For any ϕ ∈ S and the corresponding number ω, the function
e−iωtϕ is an exact solution to (NLS) (soliton).

E0(µ) and E1(µ)

For a prescribed value of mass µ > 0, we let

E0(µ) := inf{EV (φ) | φ ∈ S , M(φ) = µ},
E1(µ) := inf{EV (φ) | φ ∈ S , M(φ) = µ, EV (φ) > E0(µ)}.
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The ground state

(e0, φ0): the e.v and the normalized e.f. of H (M(φ0) = 1)

Ground state Φ[z] (Gustafson-Nakanishi-Tsai)

One has
E0(µ) = e0µ+ O(µ2) (µ ↓ 0).

Further, ∃µ∗ > 0 s.t. if 0 < µ < µ∗ then ∃Φ[z] ∈ S s.t.

EV (Φ[z]) = E0(µ),

where z ∈ C is a complex-valued parameter. Further, we have

Φ[eiθz] = eiθΦ[z], (Φ[z], φ0)L2 = 2z

and
Φ[z] = zφ0 + o(|z|2)
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Main result1: Existence of the first excited states

Theorem (M.-Murphy-Segata)

∃µ∗ > 0 s.t.if µ < µ∗ then E1(µ) < ∞ and ∃φ1 ∈ S s.t.
EV (φ1) = E1(µ). Further,

µ−1 ≲ E1(µ) ⩽ µ−1M(Q)E0(Q) + (V (0) + o(1))µ. (∗∗)

as µ ↓ 0.

Remark
• For µ > 0 small, one has

µE1(µ) < M(Q)E0(Q).

This implies that the first excited state energy is less than the
energy of the ground state for (NLS0) (with the same mass).
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Main result 2: global dynamics below first excited states

Theorem (M.-Murphy-Segata)

∃µ∗∗ > 0 s.t. the set

B := {u0 ∈ H1(R3) | M(u0) ⩽ µ∗∗, EV (u0) < E1(M(u0))}

splits into two disjoint subsets according to the validity of

∥∇u0∥L2 ⩾ 1 and KV,2(u0) < 0. (BC)

Further,

If u0 ∈ B and (BC) is true then the sol. u(t) blows up for
both time direction (in finite or infinite time).

If u0 ∈ B and (BC) is false then the sol. u(t) is global and
scatters to a ground state for both time directions, i.e.,
∃z(t) s.t. ∥u(t) − Φ[z(t)]∥L8(R;L4) < ∞.
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Outline of the proof of the first theorem

The proof is divided into three steps.

1 Introduce Ẽ1(µ), another characterization of E1(µ);

2 Prove Ẽ1(µ) obeys the estimate (∗∗);
3 Construct a minimizer to Ẽ1(µ).
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Step 1

Definition

Ẽ1(µ) := inf

{
IV (ϕ)

∣∣∣∣∣ ϕ ∈ H1, M(ϕ) ⩽ µ,

KV,2(ϕ) ⩽ 0, G(ϕ) ⩾ 1

}
where

IV (ϕ) := EV (ϕ) − 1
2
KV,2(ϕ)

= 1
2
G(ϕ) + 1

4

∫
(x · ∇V + 2V )|ϕ|2dx

Remark
• It is easy to see that Ẽ1(µ) < ∞ (i.e., the nonemptyness of the
set where the infimum is considered);
• Minimization of EV = HV − G is hard since it is not coercive.
IV (ϕ) is much easier to handle.
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Step 2

Lemma (Estimate (∗∗) for Ẽ1(µ))

∀ε > 0, ∃µ∗(ε) s.t. ∀µ ∈ (0, µ∗)

Ẽ1(µ) ⩽ µ−1M(Q)E0(Q) + (V (0) + ε)µ

(Idea of the proof) By comparison with the value of IV for a
specific function.
Substitute ϕ = Qλ := λ−1Q(·/λ) into

IV (ϕ) = 1
2
G(ϕ) + 1

4

∫
(x · ∇V + 2V )|ϕ|2dx.

Then,

Ẽ1(µ) ⩽ IV (Qλ) = µ−1M(Q)E0(Q) + (V (0) + o(1))µ

as λ ↓ 0, where µ = M(Q)λ = M(Qλ).
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Step 3

Lemma

For µ > 0 small, there exists a minimizer to Ẽ1(µ).

(Sketch of the proof) Take a minimizing sequence {vn}.
(EV (vn) → Ẽ1(µ), M(vn) → µ, KV,2(vn) → 0 )

We apply a profile decomposition of H1 bounded sequence based
on the Lieb-type compactness theorem for H1 ↪→ L4:
∃ψj ∈ H1, ∃yjn ∈ R3 s.t. upto a subseq., ∀J ⩾ 1

vn = ψ0 +

J∑
j=1

ψj(· − yjn) +RJ
n.

Further, limn→∞ |yjn| = ∞,

|yj1n − yj2n | → ∞ (j1 ̸= j2), lim
J→∞

lim
n→∞

∥∥RJ
n

∥∥
L4 = 0.
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Moreover, we have the decoupling (in)equality:

∞∑
j=0

M(ψj) ⩽ µ, KV,2(ψ0) +

∞∑
j=1

K0,2(ψj) ⩽ 0,

Ẽ1(µ) = IV (ψ0) +

∞∑
j=1

I0(ψj).

The effect of V is negligible for the profiles shifted to the spacial
infinity.

Three cases

ψj = 0 (∀j ⩾ 1) ⇒ conclusion (compactness)!;

ψj ̸= 0 for one j ⩾ 1 ⇒ precluded by (∗∗);
ψj ̸= 0 for multiple j ⩾ 1 ⇒ precluded more easily.

Remark If we put the radial symmetry, the compactness ψj = 0
(∀j ⩾ 1) immediately follows from the radial Sobolev.
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Global existence

The variational characterization of E1 gives us the following.

Theorem

∃µ∗∗ > 0 s.t. the set

B := {u0 ∈ H1(R3) | M(u0) ⩽ µ∗∗, EV (u0) < E1(M(u0))}

splits into two disjoint subsets according to the validity of

∥∇u0∥L2 ⩾ 1 and KV,2(u0) < 0 (BC)

Further

If u0 ∈ B and (BC) is true then the sol. u(t) satisfies (BC)
on its lifespan.

If u0 ∈ B and (BC) is flase then the sol. u(t) is global and
belongs to L∞(R,H1).
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On scattering to a ground state

The blowup under the condition (BC) is standard
(cf. [Akahori-Nawa]).

The main part of the proof is to establish scattering to ground
state in the latter case.

Strategy

1 Define the curve z(t), the parameter for the ground state
part, from u(t),

2 Write u(t) = Φ[z(t)] + η and apply Kenig-Merle type
argument to the radiation part η.
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Decomposition into a sum of a ground state and a radiation

Extraction of a ground-state part

∃µ∗∗∗ > 0 s.t. any u ∈ H1 with M(u) < µ∗∗∗ is uniquely
decomposed into

u = Φ[z] + η, η ∈ Pc[z]H
1,

where

Pc[z]H
1 := {f ∈ H1 | Re(if, ∂zjΦ[z]) = 0 (j = 1, 2)}.

Remark:
∂z1 , ∂z2 are the partial derivatives obtained by regarding Φ[z] as
a function of (z1, z2) ∈ R2 via z = z1 + iz2.
Remark:
The scattering to a ground state is characterized as
∥η∥L8

t (R,L4
x)
< ∞.
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a PDE-ODE system (1/2)

Let us derive a PDE-ODE system for the sosliton part z and the
radiation part η (cf. Gustafson-Nakanishi-Tsai).

An inconvenience and a remedy

The radiation part η belongs to a time-dependent space Pc[z]H
1.

Letting ξ := Pc[0]η, we fix the space to PcH
1 := Pc[0]H

1.

Pc[0]f = f − 1√
2
φ0(f,

1√
2
φ0).

Pc[0]|Pc[z]H1 is invertible if |z| ≪ 1.
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a PDE-ODE system (2/2)

Lemma (a PDE-ODE system for (ξ, z))

If u(t) is an H1 solution (NLS) with small mass then
(ξ(t), z(t)) ∈ PcH

1 × C solves{
(i∂t +H)ξ = B[z]ξ +N1(z, ξ),

ż + iΩ(|z|)z = N2(z, ξ),

where

B[z]f = Pc(|Φ[z]|2f + Φ[z]2f) : PcH
1 → PcH

1

is R-linear operator, and Ω : R+ → R+,
N1 : C × PcH

1 → PcH
1 and N2 : C × PcH

1 → C
are nonlinearities.
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Kenig-Merle argument for the radiation part

Further reduction to a single equation

We know the curve z(t) a priori since it is given by u(t).
Hence, one can regard the above system as a single equation for ξ:

(i∂t +H)ξ = B[z]ξ +N1(z, ξ), z(t) is given curve

We apply the Kenig-Merle type argument to obtain the space-time
bound of ξ.

We recast the theorem as a kind of variational problem;

The failure of the theorem implies the existence of a ghost
minimizer to the problem (use a linearized profile
decomposition);

Derive a contradiction from the existence of the ghost
minimizer. Fortunately, this part is the same as the radial case
since the spatial shift is controlled by (∗∗).
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