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7. MHD equations and analogous notions and results for the
MHD equations

MHD = Magneto–Hydro–Dynamics

The fluid is supposed to be electrically conductive.

E . . . electric field ε . . . permittivity

b . . . magnetic field µ . . . permeability

u . . . velocity of motion of the fluid

ρe . . . electric charge density ρf . . . fluid density

J . . . electric current density σ . . . electric conductivity tensor
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Maxwell’s equations:

Gauss’ law for the electric field: divE =
ρe

ε
, (7.1)

Faraday’s law of induction: curl E = −∂tb (7.2)

Gauss’ law for the magnetic field: divb = 0 (7.3)

Ampère’s law with Maxwell’s addition: curl b = µJ + εµ ∂tE (7.4)

Ohm’s law:
J = σ (E + u× b). (7.5)

Transport equation for the charge density ρe:

Due to (7.4) and (7.1),

0 = µ div J + εµ ∂t divE = µ div J + µ ∂tρe,

∂tρe + div J = 0. (7.6)
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Transport equation for b. Due to (7.2), we have

∂tb = −curl E (Faraday’a law)

= −curl (σ−1J− u× b) (due to Ohm’s law)

= −curl
[
σ−1

(
µ−1 curl b− ε ∂tE

)
− u× b

]
(due to Ampère’s law)

= ε ∂t curl E− curl
[
σ−1 µ−1 curl b− u× b

]
= −ε ∂2

tb− curl
[
σ−1 µ−1 curl b− u× b

]
(due to Faraday’s law)

Assuming further that σ ∈ R, σ > 0 and using the formula curl 2b = −∆b (which holds
for divergence–free vector fields), we get

ε ∂2
tb + ∂tb + curl (u× b) =

1

σµ
∆b

Neglecting the first term on the left hand side (due to the smallness of ε in comparison to
other quantities), we finally obtain

∂tb =
1

µσ
∆b + curl (u× b). (7.7)
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The complete system of MHD equations for an incompressible Newtonian electri-
cally conductive fluid.

We assume that the fluid is incompressible, electrically conductive, with a constant density.

The momentum equation with the specific Lorentz force:

∂tu + u · ∇u = f − 1

ρf
∇p+ ν∆u + fL, (7.8)

where fL = J× b =
(1

µ
curl b− ε ∂tE

)
× b =̇

1

µ
curl b× b,

the equation of continuity for the fluid:

divu = 0, (7.9)

the transport equation for the magnetic field:

∂tb =
1

µσ
∆b + curl (u× b), (7.10)

the Gauss law for the magnetic field:

divb = 0. (7.11)
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Transformation to the dimensionless form.

Denote by U , T ,L,B, P and F characteristic units for the velocity, time, length, magnetic
induction, pressure and the external body force respectively.

Then

u = Uu′, t = Tt′, x = Lx′, b = Bb′, p = Pp′, f = F f ′,

where u′, t′, x′, b′, p′ and f ′ represent the so called dimensionless values of the velocity,
time, length, magnetic induction, pressure and the external body force, respectively.

Substituting to the equations (7.8)–(7.11) and omitting primes, we obtain

U

T
∂tu +

U 2

L
u · ∇u = F f − P

ρfL
∇p+

νU

L2
∆u +

B2

µL
curl b× b,

U

L
divu = 0,

B

T
∂tb +

UB

L
curl (b× u) =

B

µσL2
∆b,

B

L
divb = 0.
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Choosing T := L/U , P := ρfU
2, F = U 2/L, B =

√
µU and multiplying the first

equation by L/U 2, the second equation by L/U , the third equation by L/(UB) and the
fourth equation by L/B, we obtain the system

∂tu + u · ∇u = f −∇p+
1

Rf
∆u + curl b× b, (7.12)

divu = 0, (7.13)

∂tb + curl (b× u) =
1

Rm
∆b, (7.14)

divb = 0, (7.15)

where Rf := LU/ν is the fluid Reynolds number and Rm := µσLU is the magnetic
Reynolds number.

Note that the equations (7.12) and (7.14) can also be written in the form

∂tu + u · ∇u = f −∇
(
p+ 1

2 |b|
2
)

+
1

Rf
∆u + b · ∇b, (7.12)

∂tb + u · ∇b =
1

Rm
∆b + b · ∇u. (7.14)
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8. An interior regularity of the pressure in regions, where
the velocity satisfies Serrin’s integrability condition

Motivation. Let the initial–boundary value problem for the Navier–Stokes or MHD
equations in QT := Ω × (0, T ) be given. It often happens that we study properties of
solutions only in a sub-domain Ω′ × (T1, T2), where Ω′ ⊂⊂ Ω and 0 ≤ T1 < T2 ≤ T .
In order to reduce the problem in QT just to the problem in Ω′ × (T1, T2), we can use the
method of localization.

Consider, for simplicity, just the Navier–Stokes equations. (I.e. b = 0 in the MHD sys-
tem.)

Let Ω2 ⊂⊂ Ω1 ⊂ Ω and let η be an infinitely differentiable function in R3, such that

η


= 1 in Ω2,
∈ [0, 1] in Ω1 r Ω2,
= 0 in R3 r Ω1.

Multiply u and p by η. The function ηu, however, is not divergence–free: div (ηu) =
∇η · u. Thus, we find U such that divU = ∇η · u and put û := ηu −U. The function
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U can be constructed by means of the so called Bogovskij–Pileckas operator. One can
derive that û and p̂ := ηp satisfy

∂tû + û · ∇û +∇p̂ = ν∆û + g, (8.16)

div û = 0 (8.17)

in R3 × (δ, T − δ), where

g = ηf − ∂tU−U · ∇(ηu)− (ηu) · ∇U + U · ∇U + (ηu · ∇η)u

− η (1− η)u · ∇u− 2ν∇η · ∇u− νu∆η + ν∆U + p∇η. (8.18)

The function g depends on U, p and η. We would like to have g as “nice” as possible.

If (u, p) is a suitable weak solution then the set of its singular points has the 1D Hausdorff
measure equal to 0.

(x0, t0) ∈ QT is said to be a regular point of the solution (u, p) if u is essentially bounded
in some space–time neighborhood of (x0, t0).

Each point in QT that is not regular, is said to be a singular point of the solution (u, p).

Denote by S[u, p] the set of singular points.
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Due to the information on the 1D Hausdorff measure of S[u, p], Ω1 and Ω2 can be chosen
so that [Ω1 r Ω2 × (0, T )] ∩ S[u, p] = ∅ and ∂Ω1 is arbitrarily close to ∂Ω′.

Important question:

How regular are u and p in (Ω1 r Ω2)× (T1, T2)?

Answers:

1) u is essentially bounded in (Ω1 rΩ2)× (δ, T − δ) for any δ > 0, δ < T . (Follows from
the definition of a regular point.)

2) u and all its spatial partial derivatives of all orders are essentially bounded in (Ω1 r
Ω2) × (T1 + δ, T2 − δ) for any δ > 0, δ < T2 − T1. (Follows from the result by J. Serrin
[9], which says:

If Ω′ ⊂ Ω, (T1, T2) ⊂ (0, T ) and u ∈ Lr(T1, T2; L
s(Ω′)), where 2/r +

3/s = 1, 2 < r < ∞, then u and all its spatial partial derivatives of all
orders are essentially bounded in Ω′′ × (T1 + δ, T2 − δ) for any domain
Ω′′ ⊂⊂ Ω′ and 0 < δ < T2 − T1.

3) u is Hölder–continuous in (Ω1 r Ω2) × (T1 + δ, T2 − δ) for any δ > 0, δ < T2 − T1.
(Follows from the result by A. Mahalov, B. Nicolaenko and T. Shilkin [3].
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Similar results also hold for the MHD equations. (See [3].) Here, it follows from equation
(7.14) that one also can make the same statement on ∂tb as on u and b.

These results, however, say nothing about the regularity of p and ∂tu.

Interior regularity of p and ∂tu in regions where u satisfies Serrin’s condition.

Important condition (Serrin’s condition):

(i) u ∈ Lα(T1, T2; L
β(Ω′)) for some α, β ∈ R such that

2

α
+

3

β
= 1, 3 < β <∞.

The Navier–Stokes equations in R3:

Theorem 1. Let Ω = R3. Let Ω′ be a domain in R3, 0 ≤ T1 < T2 ≤ T and let u
be a weak solution to the Navier-Stokes system (with f = 0) in R3 × (0, T ), satisfying
condition (i) in Ω′ × (T1, T2). Let p be an associated pressure. Then ∂tu, ∇p and all
their spatial derivatives (of all orders) are in L∞(Ω′′× (T1 + δ, T2 + δ)) for any δ > 0,
T1 + δ < T2 − δ and Ω′′ ⊂⊂ Ω′.
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Since p ∈ L5/3(R3×(0, T )) and∇p has all spatial derivatives in L∞(Ω′′×(T1+δ, T1−δ))
due to Theorem 1, the function ϑ ∈ L5/3(0, T ) can be chosen so that p + ϑ ∈ L∞(Ω′′ ×
(T1 + δ, T2 − δ)). (It is e.g. sufficient to put ϑ(t) :=

∫
Ω′′ p(x, t) dx.) Then all spatial

derivatives of (p+ ϑ)∇η are in L∞(Ω′′ × (T1 + δ, T2 − δ)).

The Navier–Stokes equations, the case Ω 6= R3, no slip conditions:

The next theorem comes from the papers [4] and [10] by J.N., P. Penel and Z. Skalák,
P. Kučera, respectively:

Theorem 2. Let Ω be a bounded or exterior domain in R3 with the boundary at least
of the class C2+(h) for some h > 0 or a half-space in R3. Let Ω′ be a sub-domain of Ω,
−∞ < T1 < T2 < ∞ and let u be a weak solution to the Navier-Stokes system (with
f = 0) in Ω× (0, T ), satisfying the no-slip boundary condition u = 0 on ∂Ω× (0, T )
and condition (i) in Ω′ × (T1, T2). Let p be an associated pressure. Then ∂tu, ∇p and
all their spatial derivatives (of all orders) are in Ls(T1 + δ, T2 − δ; L∞(Ω′′)) for any
s ∈ (1, 2), T1 + δ < T2 − δ and Ω′′ ⊂⊂ Ω′.
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The Navier–Stokes equations, the case Ω 6= R3, Navier’s boundary conditions:

One can take s ∈ (0, 4] in Theorem 2. (See the paper [??] by P. Kučera, J.N., Z. Skalák.)

The Navier–Stokes equations, the case Ω 6= R3, Navier–type boundary conditions:

One can take s ∈ (0,∞] in Theorem 2. (See the paper [5] by J.N., H. AlBaba.)

The MHD equations, either Ω = R3 or Ω 6= R3 and three types of boundary conditions
for u + the Navier–type boundary conditions for b:

The same results as for the Navier–Stokes equations, see the paper [6] by J.N. and M. Yang.
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9. On some regularity criteria for weak solutions to the Navier
–Stokes and MHD equations, based on the pressure

Put π := p+ 1
2 |b|

2.

The next theorem follows from Theorem 4 in [6]:

Theorem 3. Let Ω be the same as in Theorem 1 or Theorem 2. Let (u,b, p) be a
suitable weak solution to the MHD system with f = g = 0, where Rf = Rm, with
the no–slip boundary condition for u and the Navier–type boundary conditions for b.
Let Ω1 be a sub-domain of Ω and 0 ≤ t1 < t2 ≤ T . Let at least one of the following
conditions hold:

(a) π ∈ Lα(t1, t2; L
β(Ω1)) for some α ∈ [1,∞), β ∈ (3

2 ,∞], 2/α + 3/β = 2,

(b) ∇π ∈ Lα(t1, t2; L
β(Ω1)) for some α ∈ [1,∞), β ∈ (1,∞], 2/α + 3/β = 3.

Let Ω2 ⊂⊂ Ω1 and 0 < δ < 1
2(t2 − t1).

Then the solution (u,b, π) is regular in Ω2 × (t1 + δ, t2 − δ).
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If domain Ω is convex (and not such as in Theorem 1 or 2) then the statement on regularity
can be extended to the whole domain Ω, up to the boundary. The corresponding result is
the content of the next theorem, which follows from Theorem 5 in [??].

Theorem 4. Let Ω be a convex domain in R3. Let (u,b, p) be a suitable weak solution
to the MHD system in Ω × (T1, T2) with the no–slip boundary condition for u and
the Navier–type boundary conditions for b, where Rf = Rm. Let at least one of the
conditions (a), (b) from Theorem 3 hold with Ω1 = Ω and (T1, T2) = (0, T ). Then the
solution (u,b, π) does not blow–up at any time instant t ∈ (0, T ].

We assume that both u and b satisfy the Navier–type boundary conditions on ∂Ω× (0, T )
in the next criterion.

Recall that a function Φ on [0,∞) is said to be a Young function if it can be expressed
in the form Φ(s) =

∫ s
0 ϕ(σ) dσ for s ≥ 0, where ϕ(0) = 0, ϕ(σ) > 0 for σ > 0, ϕ is

right-continuous and non-decreasing on [0,∞) and limσ→∞ ϕ(σ) =∞. (See e.g. [?].) It
follows from this definition that the Young function Φ is continuous, non-negative, strictly
increasing and convex on [0,∞), and
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1) Φ(0) = 0, lims→∞ Φ(s) =∞,

2) lims→0+ Φ(s)/s = 0, lims→∞ Φ(s)/s =∞,

3) if 0 ≤ α ≤ 1 then Φ(αs) ≤ αΦ(s) for all s ≥ 0,

4) if β > 1 then Φ(βs) ≥ β Φ(s) for all s ≥ 0,

see Lemma 4.2.2 in [8].

If D is a domain in R3 then the Orlicz space LΦ(D) is the space of all measurable functi-
ons f on D with the finite norm, defined by

‖f‖LΦ(D) := inf
{
λ > 0;

∫
D

Φ
(|f(x)|

λ

)
dx ≤ 1

}
.

(This is the so called Luxemburg norm in LΦ(D), see [8].)
We consider a Young function Φ that has these additional properties:

(ii) s−3/2 Φ(s) is monotone increasing on [0,∞) and and tends to infinity as s→∞,

(iii) Φ(s)−2/3 ∈ L1((1,∞)).
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The next theorem comes from the papers [1] and [7].

Theorem 5. Suppose that

− Ω is a domain in R3, same as in Theorem 1 or Theorem 2,

− the Young function Φ satisfies the conditions (ii) and (iii),

− (u,b, p) is a suitable weak solution of the MHD equations (with f = g = 0) in
Ω× (0, T ) with the Navier–type boundary conditions for both the velocity and the
magnetic field (in the case Ω 6= R3),

− Ω′ is a sub-domain of Ω and 0 ≤ T1 < T2 ≤ T .

Then the vector fields u and b are Hölder continuous in Ω′× (T1, T2) if at least one of
the following conditions holds;

1) p− ∈ L∞(T1, T2; L
Φ(Ω′)),

2) B+ ∈ L∞(T1, T2; L
Φ(Ω′)), where B := p+ 1

2 |u|
2 + 1

2 |b|
2.

The subscripts “−” and “+” denote the negative and non-negative parts, respectively.
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