On the Role of Pressure in Theory of the Navier-Stokes and MHD Equations I

Jiří Neustupa
Academy of Sciences of the Czech Republic
Institute of Mathematics

Yonsei University Seoul, September 19, 2022

1. The Navier-Stokes equations and where they come from

Beginnings of theoretical or mathematical considerations in mechanics of fluids:

- Aristoteles (384-322 B.C.)
- Archimedes (287-212 B.C.)
- B. Pascal (1623-1662)

Important milestone: discovery of differential and integral calculus in 17th-18th centuries

- I. Newton (1642-1727)
- D. Bernoulli (1700-1782)
- L. Euler (1707-1783)

Equations of motion of an incompressible fluid

We assume, for simplicity, that the density of the fluid is constant and equal to one.

$$
\begin{align*}
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u} & =\mathbf{f}+\operatorname{div} \mathbb{T} & & \text { (conservation of momentunm) } \tag{1.1}\\
\operatorname{div} \mathbf{u} & =0 & & \text { (conservation of mass), } \tag{1.2}
\end{align*}
$$

where \mathbf{u} is the velocity, \mathbf{f} is an external body force and \mathbb{T} is the stress tensor.
Constitutive equations: provide the dependence of \mathbb{T} on other quantities.
They can be deduced from Stokes' postulates:
a) the stress tensor \mathbb{T} depends on velocity and its derivatives only through the rate of deformation tensor $\mathbb{D}:=(\nabla \mathbf{u})_{\text {sym }}$,
b) the stress tensor \mathbb{T} does not explicitly depend on position \mathbf{x} and time t,
c) the continuum is isotropic, i.e. it contains no preferred directions,
d) if the fluid is at rest then \mathbb{T} is a multiple of the identity tensor \mathbb{I} by a scalar.

One can show that c) follows from a more general postulate
c^{\prime}) the way tensor \mathbb{T} depends on tensor \mathbb{D} is frame indifferent.

Furthermore, using the postulates a), b), c') and d), one can derive that

$$
\mathbb{T}=\alpha \mathbb{I}+\beta \mathbb{D}+\gamma \mathbb{D}^{2}
$$

where α, β and γ may depend only on the principle invariants of \mathbb{D} and the state quantities, which are the pressure, the density and the temperature.

In Newtonian fluid, \mathbb{T} is supposed to depend linearly on \mathbb{D}.
From this, one can deduce that

$$
\mathbb{T}=-p \mathbb{I}+2 \nu \mathbb{D}
$$

where ν is the so called kinematic coefficient of viscosity.
We further suppose that $\nu=$ const. >0.
Substituting this form of \mathbb{T} to the momentum equation (1.1), we obtain

$$
\begin{equation*}
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}=-\nabla p+\nu \Delta \mathbf{u} \tag{1.1}
\end{equation*}
$$

This equation, together with

$$
\begin{equation*}
\operatorname{div} \mathbf{u}=0 \tag{1.2}
\end{equation*}
$$

form the system of Navier-Stokes equation. Unknowns: \mathbf{u} (velocity), p (pressure).

The equations (1.1), (1.2) are usually studied in a spatial domain - let us denote it by $\Omega-$ in \mathbb{R}^{3} and in some time interval - let it be $(0, T)$.

Initial condition:

$$
\begin{equation*}
\mathbf{u}(., 0)=\mathbf{u}_{0} \quad \text { in } \Omega \tag{1.3}
\end{equation*}
$$

Boundary conditions: of various types, the most commonly used condition is

$$
\begin{equation*}
\mathbf{u}=\mathbf{0} \quad \text { on } \partial \Omega \times(0, T) \tag{1.4}
\end{equation*}
$$

Beginnings of the qualitative theory: C. W. Oseen (1879-1944), J. Leray (1906-1998).
J. Leray proved the global in time existence of weak solutions in $\Omega=\mathbb{R}^{3}$ in the 30-ties of the 20the century, similar results in other types of domain Ω appeared later.

The global in time existence of a strong solution is known only in some special cases, like in a 2D flow, in the case of "sufficiently small" \mathbf{f} and \mathbf{u}_{0}, etc. The local in time existence of a strong solution is known e.g. for $\mathbf{u}_{0} \in \mathbf{L}^{3}(\Omega)$, $\operatorname{div} \mathbf{u}_{0}=0$.

It is remarkable that although p does not explicitly appear in the weak formulation of the problem (1.1)-(1.4), it is implicitly "hidden" in the formulation and plays an important role in the theory of the equations (1.1), (1.2).

2. Notation and some auxiliary results

$\Omega \quad \ldots \quad$ a domain in \mathbb{R}^{3}
n $\quad \ldots$ the outer normal vector to $\partial \Omega$
$\mathbf{C}_{0, \sigma}^{\infty}(\Omega) \quad \ldots$ the linear space of infinitely differentiable divergence-free vector functions in Ω, with a compact support in Ω
$\mathbf{L}_{\sigma}^{q}(\Omega) \quad \ldots \quad($ for $1<q<\infty)$ is the closure of $\mathbf{C}_{0, \sigma}^{\infty}(\Omega)$ in $\mathbf{L}^{q}(\Omega)$
$\mathbf{W}_{0, \sigma}^{1, q}(\Omega) \quad \ldots \quad$ the closure of $\mathbf{C}_{0, \sigma}^{\infty}(\Omega)$ in $\mathbf{W}^{1, q}(\Omega)$
$\|.\|_{q} \quad \ldots$ the norm in $L^{q}(\Omega)$ and in $\mathbf{L}^{q}(\Omega)$
$\|\cdot\|_{k, q} \quad \ldots$ the norm in $W^{k, q}(\Omega)$ and in $\mathbf{W}^{k, q}(\Omega)$ (for $k \in \mathbb{N}$)
$\|.\|_{q ; \Omega^{\prime}} \quad \ldots \quad$ the norm in $W^{k, q}(\Omega)$ if Ω^{\prime} differs from Ω
$(., .)_{2} \quad \ldots \quad$ the scalar product in $L^{2}(\Omega)$ and in $\mathbf{L}^{2}(\Omega)$
$(., .)_{1,2} \quad \ldots$ the scalar product in $W^{1,2}(\Omega)$ and in $\mathbf{W}^{1,2}(\Omega)$
$q^{\prime} \quad .$. the conjugate exponent to q
$\mathbf{W}_{0}^{-1, q^{\prime}}(\Omega) \quad \ldots \quad$ the dual space to $\mathbf{W}_{0}^{1, q}(\Omega)$
$\mathbf{W}_{0, \sigma}^{-1, q^{\prime}}(\Omega) \quad \ldots \quad$ the dual space to $\mathbf{W}_{0, \sigma}^{1, q}(\Omega)$
$\|\cdot\|_{-1, q^{\prime}} \quad \ldots$ the norm in $\mathbf{W}_{0}^{-1, q^{\prime}}(\Omega)$
$\|.\|_{-1, q^{\prime} ; \sigma} \quad \ldots \quad$ the norm in $\mathbf{W}_{0, \sigma}^{-1, q^{\prime}}(\Omega)$
$\langle., .\rangle_{\Omega} \quad \ldots$ the duality between elements of $\mathbf{W}_{0}^{-1, q^{\prime}}(\Omega)$ and $\mathbf{W}_{0}^{1, q}(\Omega)$
$\langle., .\rangle_{\Omega, \sigma} \quad \ldots \quad$ the duality between elements of $\mathbf{W}_{0, \sigma}^{-1, q^{\prime}}(\Omega)$ and $\mathbf{W}_{0, \sigma}^{1, q}(\Omega)$
$\mathbf{W}_{0, \sigma}^{1, q}(\Omega)^{\perp} \quad \ldots \quad$ the space of annihilators of $\mathbf{W}_{0, \sigma}^{1, q}(\Omega)$ in $\mathbf{W}_{0}^{-1, q^{\prime}}(\Omega)$

$$
=\text { the space }\left\{\mathbf{f} \in \mathbf{W}_{0}^{-1, q^{\prime}}(\Omega) ; \forall \boldsymbol{\varphi} \in \mathbf{W}_{0, \sigma}^{1, q}(\Omega):\langle\mathbf{f}, \boldsymbol{\varphi}\rangle_{\Omega}=0\right\}
$$

Remark. Note that generally

$$
\mathbf{W}_{0, \sigma}^{1, q}(\Omega) \subset\left\{\mathbf{v} \in \mathbf{W}_{0}^{1, q}(\Omega) ; \operatorname{div} \mathbf{v}=0 \text { a.e. in } \Omega\right\}
$$

The equality holds e.g. if Ω has a bounded Lipschitz boundary or Ω is a half-space, see [3] (the book by G. P. Galdi), Sec. III.4, for more details.

Remark. The Lebesgue space $\mathbf{L}^{q^{\prime}}(\Omega)$ can be identified with a subspace of $\mathbf{W}_{0}^{-1, q^{\prime}}(\Omega)$ so that if $\mathbf{f} \in \mathbf{L}^{q^{\prime}}(\Omega)$ then

$$
\begin{equation*}
\langle\mathbf{f}, \boldsymbol{\varphi}\rangle_{\Omega}:=\int_{\Omega} \mathbf{f} \cdot \boldsymbol{\varphi} \mathrm{d} \mathbf{x} \tag{2.1}
\end{equation*}
$$

for all $\varphi \in \mathbf{W}_{0}^{1, q}(\Omega)$. Similarly, $\mathbf{L}_{\sigma}^{q^{\prime}}(\Omega)$ can be identified with a subspace of $\mathbf{W}_{0, \sigma}^{-1, q^{\prime}}(\Omega)$ so that if $\mathbf{f} \in \mathbf{L}_{\sigma}^{q^{\prime}}(\Omega)$ then

$$
\begin{equation*}
\langle\mathbf{f}, \boldsymbol{\varphi}\rangle_{\Omega, \sigma}:=\int_{\Omega} \mathbf{f} \cdot \boldsymbol{\varphi} \mathrm{d} \mathbf{x} \tag{2.2}
\end{equation*}
$$

for all $\boldsymbol{\varphi} \in \mathbf{W}_{0, \sigma}^{1, q}(\Omega)$. If $\mathbf{f} \in \mathbf{L}_{\sigma}^{q^{\prime}}(\Omega)$ and $\boldsymbol{\varphi} \in \mathbf{W}_{0, \sigma}^{1, q}(\Omega)$ then the dualities $\langle\mathbf{f}, \boldsymbol{\varphi}\rangle_{\Omega}$ and $\langle\mathbf{f}, \boldsymbol{\varphi}\rangle_{\Omega, \sigma}$ coincide, because they are expressed by the same integral.

Remark. If $\mathbf{f} \in \mathbf{L}^{q^{\prime}}(\Omega)$ then the integral on the right hand side of (2.1) also defines a bounded linear functional on $\mathbf{W}_{0, \sigma}^{1, q}(\Omega)$.
This, however, does not mean that $\mathbf{L}^{q^{\prime}}(\Omega)$ can be identified with a subspace of $\mathbf{W}_{0, \sigma}^{-1, q^{\prime}}(\Omega)$. The reason is, for instance, that the spaces $\mathbf{L}^{q^{\prime}}(\Omega)$ and $\mathbf{W}_{0, \sigma}^{-1, q^{\prime}}(\Omega)$ do not have the same zero element. (If ψ is a non-constant function in $C_{0}^{\infty}(\Omega)$ then $\nabla \psi$ is a non-zero element of $\mathbf{L}^{q^{\prime}}(\Omega)$, but it induces the zero element of $\mathbf{W}_{0, \sigma}^{-1, q^{\prime}}(\Omega)$.)

Operator $\mathscr{P}_{q^{\prime}} \cdot \mathbf{W}_{0, \sigma}^{1, q}(\Omega)$ is a closed subspace of $\mathbf{W}_{0}^{1, q}(\Omega)$. If $\mathbf{f} \in \mathbf{W}_{0}^{-1, q^{\prime}}(\Omega)$ then we denote by $\mathscr{P}_{q^{\prime}} \mathbf{f}$ the restriction of \mathbf{f} to $\mathbf{W}_{0, \sigma}^{1, q}(\Omega)$. Thus, $\mathscr{P}_{q^{\prime}} \mathbf{f}$ is an element of $\mathbf{W}_{0, \sigma}^{-1, q^{\prime}}(\Omega)$, defined by the equation

$$
\left\langle\mathscr{P}_{q^{\prime}} \mathbf{f}, \boldsymbol{\varphi}\right\rangle_{\Omega, \sigma}:=\langle\mathbf{f}, \boldsymbol{\varphi}\rangle_{\Omega} \quad \text { for all } \boldsymbol{\varphi} \in \mathbf{W}_{0, \sigma}^{1, q}(\Omega)
$$

$\mathscr{P}_{q^{\prime}}$ is a linear operator from $\mathbf{W}_{0}^{-1, q^{\prime}}(\Omega)$ to $\mathbf{W}_{0, \sigma^{-1, q^{\prime}}}(\Omega), D\left(\mathscr{P}_{q^{\prime}}\right)=\mathbf{W}_{0}^{-1, q^{\prime}}(\Omega)$.

Lemma 1. $\mathscr{P}_{q^{\prime}}$ is a bounded operator from $\mathbf{W}_{0}^{-1, q^{\prime}}(\Omega)$ to $\mathbf{W}_{0, \sigma}^{-1, q^{\prime}}(\Omega)$. Its domain is the whole space $\mathbf{W}_{0}^{-1, q^{\prime}}(\Omega)$, its range is the whole space $\mathbf{W}_{0, \sigma}^{-1, q^{\prime}}(\Omega)$ and $\mathscr{P}_{q^{\prime}}$ is not $1-1$.

Proof. Boundedness of $\mathscr{P}_{q^{\prime}}$: Let $\mathbf{f} \in \mathbf{W}_{0}^{-1, q^{\prime}}(\Omega)$. Then

$$
\begin{aligned}
\left\|\mathscr{P}_{q^{\prime}} \mathbf{f}\right\|_{-1, q^{\prime} ; \sigma} & =\sup _{\varphi \in \mathbf{W}_{0, \sigma}^{1, q}(\Omega) ; \varphi \neq \mathbf{0}} \frac{\left|\left\langle\mathscr{P}_{q^{\prime}} \mathbf{f}, \boldsymbol{\varphi}\right\rangle_{\Omega, \sigma}\right|}{\|\boldsymbol{\varphi}\|_{1, q}}=\sup _{\boldsymbol{\varphi} \in \mathbf{W}_{0, \sigma}^{1, q}(\Omega) ; \varphi \neq \mathbf{0}} \frac{\left|\langle\mathbf{f}, \boldsymbol{\varphi}\rangle_{\Omega}\right|}{\|\boldsymbol{\varphi}\|_{1, q}} \\
& \leq \sup _{\varphi \in \mathbf{W}_{0}^{1, q}(\Omega) ; \varphi \neq \mathbf{0}} \frac{\left|\langle\mathbf{f}, \boldsymbol{\varphi}\rangle_{\Omega}\right|}{\|\boldsymbol{\varphi}\|_{1, q}}=\|\mathbf{f}\|_{-1, q^{\prime}} .
\end{aligned}
$$

Range of $\mathscr{P}_{q^{\prime}}$: Let $\mathbf{g} \in \mathbf{W}_{0, \sigma}^{-1, q^{\prime}}(\Omega)$. There exists (by the Hahn-Banach theorem) an extension of \mathbf{g} from $\mathbf{W}_{0, \sigma}^{1, q}(\Omega)$ to $\mathbf{W}_{0}^{1, q}(\Omega)$, which we denote by $\mathbf{g}_{\text {ext }}$. The extension is an element of $\mathbf{W}_{0}^{-1, q^{\prime}}(\Omega)$, satisfying $\left\|\mathbf{g}_{\text {ext }}\right\|_{-1, q^{\prime}}=\|\mathbf{g}\|_{-1, q^{\prime} ; \sigma}$ and

$$
\begin{equation*}
\left\langle\mathbf{g}_{\mathrm{ext}}, \boldsymbol{\varphi}\right\rangle_{\Omega}=\langle\mathbf{g}, \boldsymbol{\varphi}\rangle_{\Omega, \sigma} \quad \text { for all } \boldsymbol{\varphi} \in \mathbf{W}_{0, \sigma}^{1, q}(\Omega) \tag{2.3}
\end{equation*}
$$

This shows that $\mathbf{g}=\mathscr{P}_{q^{\prime}} \mathbf{g}_{\text {ext }}$. Consequently, $\mathbf{W}_{0, \sigma}^{-1, q^{\prime}}(\Omega)=R\left(\mathscr{P}_{q^{\prime}}\right)$.
$\mathscr{P}_{q^{\prime}}$ is not $1-1$: Taking $\mathbf{f}=\nabla g$ for $g \in C_{0}^{\infty}(\Omega)$, we get

$$
\left\langle\mathscr{P}_{q^{\prime}} \mathbf{f}, \boldsymbol{\varphi}\right\rangle_{\Omega, \sigma}=\langle\mathbf{f}, \boldsymbol{\varphi}\rangle_{\Omega}=\int_{\Omega} \nabla q \cdot \boldsymbol{\varphi} \mathrm{~d} \mathbf{x}=0 \quad \text { for all } \boldsymbol{\varphi} \in \mathbf{W}_{0, \sigma}^{1, q}(\Omega)
$$

Hence $\mathscr{P}_{q^{\prime}}$ is not $1-1$.

The next lemma tells us more on the space $\mathbf{W}_{0, \sigma}^{1, q}(\Omega)^{\perp}$ in the case when Ω is a bounded Lipschitz domain in \mathbb{R}^{3}. It comes from [7; Lemma II.2.2.2]. (The book by H. Sohr.)

Lemma 2. Let Ω be a bounded Lipschitz domain in \mathbb{R}^{3}, Ω_{0} be a nonempty sub-domain of $\Omega, 1<q<\infty$ and \mathbf{f} be a bounded linear functional on $\mathbf{W}_{0}^{1, q}(\Omega)$ that vanishes on $\mathbf{W}_{0, \sigma}^{1, q}(\Omega)$ (which means that $\mathbf{f} \in \mathbf{W}_{0, \sigma}^{1, q}(\Omega)^{\perp}$). Then there exists a unique function $\varphi \in L^{q^{\prime}}(\Omega)$ such that $\int_{\Omega_{0}} \varphi \mathrm{~d} \mathbf{x}=0$,

$$
\begin{equation*}
\langle\mathbf{f}, \boldsymbol{\psi}\rangle_{\Omega}=\int_{\Omega} \varphi \operatorname{div} \boldsymbol{\psi} \mathrm{d} \mathbf{x} \tag{2.4}
\end{equation*}
$$

for all $\boldsymbol{\psi} \in \mathbf{W}_{0}^{1, q}(\Omega)$

$$
\begin{equation*}
\|\varphi\|_{q^{\prime}} \leq c\|\mathbf{f}\|_{-1, q^{\prime}} \tag{2.5}
\end{equation*}
$$

where $c=c\left(q, \Omega_{0}, \Omega\right)$.

Formula (2.4) shows that $\mathbf{f}=\nabla \varphi$, where operator ∇ acts on φ in the sense of distributions. Thus, we may symbolically write $\mathbf{W}_{0, \sigma}^{1, q}(\Omega)^{\perp}=\nabla\left(L^{q^{\prime}}(\Omega)\right)$.

In order to characterize $\mathbf{W}_{0, \sigma}^{1, q}(\Omega)^{\perp}$ in the case of an arbitrary domain Ω in \mathbb{R}^{3}, we denote by $L_{p o t}^{q^{\prime}}(\Omega)$ the set of all $\varphi \in L_{l o c}^{q^{\prime}}(\Omega)$ such that $\nabla \varphi \in \mathbf{W}_{0}^{-1, q^{\prime}}(\Omega)$.

Lemma 3. If Ω is an arbitrary domain in $\mathbb{R}^{3}, \mathbf{f} \in \mathbf{W}_{0, \sigma}^{1, q}(\Omega)^{\perp}$ and $\Omega_{0} \subset \subset \Omega$ is a nonempty sub-domain of Ω then there is a unique $\varphi \in L_{\text {pot }}^{q^{\prime}}(\Omega)$ such that $\mathbf{f}=\nabla \varphi$ (the distributional gradient of φ) and $\int_{\Omega_{0}} \varphi \mathrm{~d} \mathbf{x}=0$.
(Here and further on, $\Omega_{0} \subset \subset \Omega$ means that Ω_{0} is a bounded sub-domain of Ω such that $\overline{\Omega_{0}} \subset \Omega$.) The lemma shows that $\mathbf{W}_{0, \sigma}^{1, q}(\Omega)^{\perp}=\nabla\left(L_{\text {pot }}^{q^{\prime}}(\Omega)\right)$.

The proof can be found in [5; Chap. 4] (the book "Fluids under Pressure").

The Helmholtz projection $P_{q^{\prime}}$ and its relation to operator $\mathscr{P}_{q^{\prime}}$. $\operatorname{Put} \mathbf{G}_{q^{\prime}}(\Omega):=\{\nabla \psi \in$ $\left.\mathbf{L}^{q^{\prime}}(\Omega) ; \psi \in W_{l o c}^{1, q^{\prime}}(\Omega)\right\} . \mathbf{G}_{q^{\prime}}(\Omega)$ is a closed subspace of $\mathbf{L}^{q^{\prime}}(\Omega)$, see [3; Exercise III.1.2] (the book by G. P. Galdi).
If each function $\mathbf{g} \in \mathbf{L}^{q^{\prime}}(\Omega)$ can be uniquely expressed in the form

$$
\mathbf{g}=\mathbf{v}+\nabla \psi
$$

for some $\mathbf{v} \in \mathbf{L}_{\sigma}^{q^{\prime}}(\Omega)$ and $\nabla \psi \in \mathbf{G}_{q^{\prime}}(\Omega)$, which is equivalent to the validity of the decomposition

$$
\begin{equation*}
\mathbf{L}^{q^{\prime}}(\Omega)=\mathbf{L}_{\sigma}^{q^{\prime}}(\Omega) \oplus \mathbf{G}_{q^{\prime}}(\Omega), \tag{2.6}
\end{equation*}
$$

then we write

$$
\mathbf{v}=P_{q^{\prime}} \mathbf{g}
$$

Decomposition (2.6) is called the Helmholtz decomposition and the operator $P_{q^{\prime}}$ is called the Helmholtz projection.
If $q^{\prime}=2$ then the Helhholtz decomposition exists on an arbitrary domain Ω and P_{2} is the orthogonal projection of $\mathbf{L}^{2}(\Omega)$ onto $\mathbf{L}_{\sigma}^{2}(\Omega)$.
If $q^{\prime} \neq 2$ then the Helmholtz decomposition exists e.g. if Ω is a domain of the class C^{2} (see [3; Section III.1]).

Assume, for a while, that the Helmholtz decomposition of $\mathbf{L}^{q^{\prime}}(\Omega)$ exists.
What is the relation between the operators $\mathscr{P}_{q^{\prime}}$ and $P_{q^{\prime}}$. Let $\mathbf{g} \in \mathbf{L}^{q^{\prime}}(\Omega)$.
Recall that $\mathscr{P}_{q^{\prime}}: \mathbf{W}_{0}^{-1, q^{\prime}}(\Omega) \rightarrow \mathbf{W}_{0, \sigma}^{-1, q^{\prime}}(\Omega)$, while $P_{q^{\prime}}: \mathbf{L}^{q^{\prime}}(\Omega) \rightarrow \mathbf{L}_{\sigma} q^{\prime}$.
Let $\mathbf{g} \in \mathbf{L}^{q^{\prime}}(\Omega)$. (Hence \mathbf{g} can also be treated as an element of $\mathbf{W}_{0}^{-1, q^{\prime}}(\Omega)$.) One can show that

$$
\left\langle\mathscr{P}_{q^{\prime}} \mathbf{g}, \boldsymbol{\varphi}\right\rangle_{\Omega, \sigma}=\left\langle P_{q^{\prime}} \mathbf{g}, \boldsymbol{\varphi}\right\rangle_{\Omega, \sigma}
$$

for all $\varphi \in \mathbf{W}_{0, \sigma}^{1, q}(\Omega)$.
From this, we observe that the Helmholtz projection $P_{q^{\prime}}$ coincides with the restriction of $\mathscr{P}_{q^{\prime}}$ to $\mathbf{L}^{q^{\prime}}(\Omega)$.

3. A weak solution of the Navier-Stokes IBVP - three equiv. definitions

Classical form of the Navier-Stokes IBVP: For $T>0$, we consider

$$
\begin{align*}
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}+\nabla p & =\nu \Delta \mathbf{u}+\mathbf{f} & & \text { in } Q_{T}:=\Omega \times(0, T), \tag{3.1}\\
\text { div } \mathbf{u} & =0 & & \text { in } Q_{T}, \tag{3.2}\\
\text { boundary condition: } \quad \mathbf{u} & =\mathbf{0} & & \text { on } \Gamma_{T}:=\partial \Omega \times(0, T) \tag{3.3}\\
\text { initial condition: } \quad \mathbf{u} & =\mathbf{u}_{0} & & \text { in } \Omega \times\{0\} . \tag{3.4}
\end{align*}
$$

Definition 1 of a weak solution of the Navier-Stokes IBVP (3.1)-(3.4). Given $\mathbf{u}_{0} \in$ $\mathbf{L}_{\sigma}^{2}(\Omega)$ and $\mathbf{f} \in L^{2}\left(0, T ; \mathbf{W}_{0}^{-1,2}(\Omega)\right)$. A function $\mathbf{u} \in L^{\infty}\left(0, T ; \mathbf{L}_{\sigma}^{2}(\Omega)\right) \cap L^{2}\left(0, T ; \mathbf{W}_{0, \sigma}^{1,2}(\Omega)\right)$ is said to be a weak solution to the problem (3.1)-(3.4) if
$\int_{0}^{T} \int_{\Omega}\left[-\mathbf{u} \cdot \partial_{t} \boldsymbol{\phi}+\nu \nabla \mathbf{u}: \nabla \boldsymbol{\phi}+\mathbf{u} \cdot \nabla \mathbf{u} \cdot \boldsymbol{\phi}\right] \mathrm{d} \mathbf{x} \mathrm{d} t=\int_{\Omega} \mathbf{u}_{0} \cdot \boldsymbol{\phi}(\mathbf{x}, 0) \mathrm{d} \mathbf{x}+\int_{0}^{T}\langle\mathbf{f}, \boldsymbol{\phi}\rangle_{\Omega} \mathrm{d} t$
for all $\boldsymbol{\phi} \in C^{\infty}\left([0, T] ; \mathbf{W}_{0, \sigma}^{1,2}(\Omega)\right)$ such that $\boldsymbol{\phi}(T)=\mathbf{0}$.

Define $\mathcal{A}: \mathbf{W}_{0}^{1,2}(\Omega) \rightarrow \mathbf{W}_{0}^{-1,2}(\Omega)$ and $\mathcal{B}:\left[\mathbf{W}_{0}^{1,2}(\Omega)\right]^{2} \rightarrow \mathbf{W}_{0}^{-1,2}(\Omega)$ by the equations

$$
\begin{array}{ll}
\langle\mathcal{A} \mathbf{v}, \boldsymbol{\varphi}\rangle_{\Omega}:=\int_{\Omega} \nabla \mathbf{v}: \nabla \boldsymbol{\varphi} \mathrm{d} \mathbf{x} & \text { for } \mathbf{v}, \boldsymbol{\varphi} \in \mathbf{W}_{0}^{1,2}(\Omega) \\
\langle\mathcal{B}(\mathbf{v}, \mathbf{w}), \boldsymbol{\varphi}\rangle_{\Omega}:=\int_{\Omega} \mathbf{v} \cdot \nabla \mathbf{w} \cdot \boldsymbol{\varphi} \mathrm{d} \mathbf{x} & \text { for } \mathbf{v}, \mathbf{w}, \boldsymbol{\varphi} \in \mathbf{W}_{0}^{1,2}(\Omega) .
\end{array}
$$

Obviously, operator \mathcal{A} is one-to-one and

$$
\begin{equation*}
\|\mathcal{A} \mathbf{v}\|_{-1,2} \leq\|\nabla \mathbf{v}\|_{2} \tag{3.6}
\end{equation*}
$$

The bilinear operator \mathcal{B} satisfies

$$
\begin{align*}
& \|\mathcal{B}(\mathbf{v}, \mathbf{w})\|_{-1,2}=\sup _{\boldsymbol{\varphi} \in \mathbf{W}_{0}^{1,2}(\Omega), \varphi \neq \mathbf{0}} \frac{\left|\langle\mathcal{B}(\mathbf{v}, \mathbf{w}), \boldsymbol{\varphi}\rangle_{\Omega}\right|}{\|\boldsymbol{\varphi}\|_{1,2}}=\sup _{\boldsymbol{\varphi} \in \mathbf{W}_{0}^{1,2(}(\Omega), \varphi \neq \mathbf{0}} \frac{\left|(\mathbf{v} \cdot \nabla \mathbf{w}, \boldsymbol{\varphi})_{2}\right|}{\|\boldsymbol{\varphi}\|_{1,2}} \\
& \quad \leq \sup _{\varphi \in \mathbf{W}_{0}^{1,2}(\Omega), \varphi \neq \mathbf{0}} \frac{\|\mathbf{v}\|_{2}^{1 / 2}\|\mathbf{v}\|_{6}^{1 / 2}\|\nabla \mathbf{w}\|_{2}\|\boldsymbol{\varphi}\|_{6}}{\|\boldsymbol{\varphi}\|_{1,2}} \leq c\|\mathbf{v}\|_{2}^{1 / 2}\|\nabla \mathbf{v}\|_{2}^{1 / 2}\|\nabla \mathbf{w}\|_{2} . \tag{3.7}
\end{align*}
$$

Let \mathbf{u} be a weak solution of the IBVP (3.1)-(3.4) in the sense of Definition 1. It follows from the estimates (3.6) and (3.7) that

$$
\begin{equation*}
\mathcal{A} \mathbf{u} \in L^{2}\left(0, T ; \mathbf{W}_{0}^{-1,2}(\Omega)\right) \quad \text { and } \quad \mathcal{B}(\mathbf{u}, \mathbf{u}) \in L^{4 / 3}\left(0, T ; \mathbf{W}_{0}^{-1,2}(\Omega)\right) \tag{3.8}
\end{equation*}
$$

Considering function ϕ in (3.5) in the form $\phi(\mathbf{x}, t)=\boldsymbol{\varphi}(\mathbf{x}) \vartheta(t)$ where $\varphi \in \mathbf{W}_{0, \sigma}^{1,2}(\Omega)$ and $\vartheta \in C_{0}^{\infty}((0, T))$, we deduce that \mathbf{u} satisfies the equation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mathbf{u}, \boldsymbol{\varphi})_{2}+\nu\langle\mathcal{A} \mathbf{u}, \boldsymbol{\varphi}\rangle_{\Omega}+\langle\mathcal{B}(\mathbf{u}, \mathbf{u}), \boldsymbol{\varphi}\rangle_{\Omega}=\langle\mathbf{f}, \boldsymbol{\varphi}\rangle_{\Omega} \tag{3.9}
\end{equation*}
$$

a.e. in $(0, T)$, where the derivative of $(\mathbf{u}, \boldsymbol{\varphi})_{2}$ means the derivative in the sense of distributions.
It follows from (3.8) that $\langle\mathcal{A} \mathbf{u}, \boldsymbol{\varphi}\rangle_{\Omega} \in L^{2}(0, T)$ and $\langle\mathcal{B}(\mathbf{u}, \mathbf{u}), \boldsymbol{\varphi}\rangle_{\Omega} \in L^{4 / 3}(0, T)$. Since $\langle\mathbf{f}, \boldsymbol{\varphi}\rangle_{\Omega} \in L^{2}(0, T)$, we observe from (3.9) that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(\mathbf{u}, \boldsymbol{\varphi})_{2} \text { (in the sense of distributions) } \in L^{4 / 3}(0, T)
$$

Hence $(\mathbf{u}, \boldsymbol{\varphi})_{2}$ is (after a possible redefinition on a set of measure zero) a continuous function in $[0, T)$. Now, one can deduce from (3.5) that

$$
\begin{equation*}
\left.(\mathbf{u}, \boldsymbol{\varphi})_{2}\right|_{t=0}=\left(\mathbf{u}_{0}, \boldsymbol{\varphi}\right)_{2} \quad \text { for all } \boldsymbol{\varphi} \in \mathbf{W}_{0, \sigma}^{1,2}(\Omega) \tag{3.10}
\end{equation*}
$$

Definition 2 of a weak solution of the Navier-Stokes IBVP (3.1)-(3.4). Given $\mathbf{u}_{0} \in$ $\mathbf{L}_{\sigma}^{2}(\Omega)$ and $\mathbf{f} \in L^{2}\left(0, T ; \mathbf{W}_{0}^{-1,2}(\Omega)\right)$. Find $\mathbf{u} \in L^{\infty}\left(0, T ; \mathbf{L}_{\sigma}^{2}(\Omega)\right) \cap L^{2}\left(0, T ; \mathbf{W}_{0, \sigma}^{1,2}(\Omega)\right)$ (called the weak solution) such that, for each $\varphi \in \mathbf{W}_{0, \sigma}^{1,2}(\Omega)$, \mathbf{u} satisfies the equation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mathbf{u}, \boldsymbol{\varphi})_{2}+\nu\langle\mathcal{A} \mathbf{u}, \boldsymbol{\varphi}\rangle_{\Omega}+\langle\mathcal{B}(\mathbf{u}, \mathbf{u}), \boldsymbol{\varphi}\rangle_{\Omega}=\langle\mathbf{f}, \boldsymbol{\varphi}\rangle_{\Omega} \tag{3.9}
\end{equation*}
$$

a.e. in $(0, T)$ and the initial condition

$$
\begin{equation*}
\left.(\mathbf{u}, \boldsymbol{\varphi})_{2}\right|_{t=0}=\left(\mathbf{u}_{0}, \boldsymbol{\varphi}\right)_{2} \quad \text { for all } \boldsymbol{\varphi} \in \mathbf{W}_{0, \sigma}^{1,2}(\Omega) \tag{3.10}
\end{equation*}
$$

Lemma 4. Let \mathbf{X} be a Banach space with the dual $\mathbf{X}^{*},\langle.,$.$\rangle be the duality between$ \mathbf{X}^{*} and $\mathbf{X},-\infty<a<b<\infty$ and $\mathbf{u}, \mathbf{g} \in L^{1}(a, b ; \mathbf{X})$. Then the following three conditions are equivalent:

1) \mathbf{u} is a.e. in (a, b) equal to a primitive function of \mathbf{g}, which means that

$$
\mathbf{u}(t)=\boldsymbol{\xi}+\int_{a}^{t} \mathbf{g}(s) \mathrm{d} s \quad \text { for some } \boldsymbol{\xi} \in \mathbf{X} \text { and a.a. } t \in(a, b)
$$

2) $\int_{a}^{b} \vartheta^{\prime}(t) \mathbf{u}(t) \mathrm{d} t=-\int_{a}^{b} \vartheta(t) \mathbf{g}(t) \mathrm{d} t \quad$ for all $\vartheta \in C_{0}^{\infty}((a, b))$,
3) $\frac{\mathrm{d}}{\mathrm{d} t}\langle\boldsymbol{\eta}, \mathbf{u}\rangle=\langle\boldsymbol{\eta}, \mathbf{g}\rangle \quad$ in the sense of distributions in (a, b) for each $\boldsymbol{\eta} \in \mathbf{X}^{*}$.

If the conditions 1) - 3) are fulfilled then \mathbf{u} is a.e. in (a, b) equal to a continuous function from $[a, b]$ to \mathbf{X}.

See Lemma III.1.1 in [8] (the book by R. Temam).
Note that if functions \mathbf{u} and \mathbf{g} are related as in item 2) then \mathbf{g} is called the distributional derivative of \mathbf{u} with respect to t and it is usually denoted by \mathbf{u}^{\prime}.

Equation (3.9) can also be written in the equivalent form

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mathbf{u}, \boldsymbol{\varphi})_{2}+\nu\left\langle\mathscr{P}_{2} \mathcal{A} \mathbf{u}, \boldsymbol{\varphi}\right\rangle_{\Omega, \sigma}+\left\langle\mathscr{P}_{2} \mathcal{B}(\mathbf{u}, \mathbf{u}), \boldsymbol{\varphi}\right\rangle_{\Omega, \sigma}=\left\langle\mathscr{P}_{2} \mathbf{f}, \boldsymbol{\varphi}\right\rangle_{\Omega, \sigma} . \tag{3.11}
\end{equation*}
$$

Let us denote by $\left(\mathbf{u}^{\prime}\right)_{\sigma}$ the distributional derivative with respect to t of \mathbf{u}, as a function from $(0, T)$ to $\mathbf{W}_{0, \sigma}^{-1,2}(\Omega)$. Applying Lemma 4 (with $\mathbf{X}=\mathbf{W}_{0, \sigma}^{-1,2}(\Omega)$ and $\mathbf{X}^{*}=\mathbf{W}_{0, \sigma}^{1,2}(\Omega)$), we deduce that equation (3.11) is equivalent to

$$
\begin{equation*}
\left(\mathbf{u}^{\prime}\right)_{\sigma}+\nu \mathscr{P}_{2} \mathcal{A} \mathbf{u}+\mathscr{P}_{2} \mathcal{B}(\mathbf{u}, \mathbf{u})=\mathscr{P}_{2} \mathbf{f} \tag{3.12}
\end{equation*}
$$

which is an equation in $\mathbf{W}_{0, \sigma}^{-1,2}(\Omega)$, satisfied a.e. in the time interval $(0, T)$.
It shows that $\left(\mathbf{u}^{\prime}\right)_{\sigma} \in L^{4 / 3}\left(0, T ; \mathbf{W}_{0, \sigma}^{-1,2}(\Omega)\right)$.
Hence \mathbf{u} coincides a.e. in $(0, T)$ with a continuous function from $[0, T)$ to $\mathbf{W}_{0, \sigma}^{-1,2}(\Omega)$.
Definition 3 of a weak solution of the Navier-Stokes IBVP (3.1)-(3.4). Given $\mathbf{u}_{0} \in$ $\mathbf{L}_{\sigma}^{2}(\Omega)$ and $\mathbf{f} \in L^{2}\left(0, T ; \mathbf{W}_{0}^{-1,2}(\Omega)\right)$. Function $\mathbf{u} \in L^{\infty}\left(0, T ; \mathbf{L}_{\sigma}^{2}(\Omega)\right) \cap L^{2}\left(0, T ; \mathbf{W}_{0, \sigma}^{1,2}(\Omega)\right)$ is called a weak solution to the IBVP (3.1)-(3.4) if \mathbf{u} satisfies equation (3.12) a.e. in the interval $(0, T)$ and the initial condition (3.4), where $\left.\mathbf{u}\right|_{t=0}$ is the value of the aforementioned continuous function at time $t=0$.

Remark. We have shown that \mathbf{u} coincides a.e. in $(0, T)$ with a continuous function from $[0, T)$ to $\mathbf{W}_{0, \sigma}^{-1,2}(\Omega)$.
This, however, does not imply that \mathbf{u} coincides a.e. in $(0, T)$ with a continuous function from $[0, T)$ to $\mathbf{W}_{0}^{-1,2}(\Omega)$.
It is connected with the fact that the derivative $\left(\mathbf{u}^{\prime}\right)_{\sigma}$ in equation (3.12) is the distributional derivative with respect to t of \mathbf{u}, as a function from $(0, T)$ to $\mathbf{W}_{0, \sigma}^{-1,2}(\Omega)$ and not the distributional derivative with respect to t of \mathbf{u}, as a function from $(0, T)$ to $\mathbf{W}_{0}^{-1,2}(\Omega)$.

As it is important to distinguish between these two derivatives, we use the different notation: while the first derivative is denoted by $\left(\mathbf{u}^{\prime}\right)_{\sigma}$, the second is denoted just by \mathbf{u}^{\prime}. We can formally write $\left(\mathbf{u}^{\prime}\right)_{\sigma}=\mathscr{P}_{2} \mathbf{u}^{\prime}$.

4. An associated pressure - existence, structure, uniqueness

Projections $E^{1,2}$ and $E^{-1,2}$. Recall that $\mathbf{W}_{0}^{1,2}(\Omega)$ is a Hilbert space with the scalar product

$$
(\mathbf{u}, \mathbf{v})_{1,2}=\int_{\Omega}(\nabla \mathbf{u}: \nabla \mathbf{v}+\mathbf{u} \cdot \mathbf{v}) \mathrm{d} \mathbf{x}=\langle(\mathcal{A}+I) \mathbf{u}, \mathbf{v}\rangle_{\Omega}
$$

By analogy, $\mathbf{W}_{0}^{-1,2}(\Omega)$ is a Hilbert space with the scalar product

$$
\begin{equation*}
(\mathbf{f}, \mathbf{g})_{-1,2}=\left\langle\mathbf{f},(\mathcal{A}+I)^{-1} \mathbf{g}\right\rangle_{\Omega}=\left((\mathcal{A}+I)^{-1} \mathbf{f},(\mathcal{A}+I)^{-1} \mathbf{g}\right)_{1,2} . \tag{4.1}
\end{equation*}
$$

Denote by $E^{1,2}$ the orthogonal projection in $\mathbf{W}_{0}^{1,2}(\Omega)$ such that

$$
\begin{equation*}
\operatorname{ker} E^{1,2}=\mathbf{W}_{0, \sigma}^{1,2}(\Omega) \tag{4.2}
\end{equation*}
$$

and by $E^{-1,2}$ the adjoint projection in $\mathbf{W}_{0}^{-1,2}(\Omega)$.
It follows from (4.2) that the range of $E^{-1,2}$ is $\mathbf{W}_{0, \sigma}^{1,2}(\Omega)^{\perp}$.
Due to (4.1) and the orthogonality of $E^{1,2}$, we have, for $\mathbf{f} \in \mathbf{W}_{0}^{-1,2}(\Omega)$ and $\psi \in \mathbf{W}_{0}^{1,2}(\Omega)$

$$
\left\langle\mathbf{f}, E^{1,2} \boldsymbol{\psi}\right\rangle_{\Omega}=\left((\mathcal{A}+I)^{-1} \mathbf{f}, E^{1,2} \boldsymbol{\psi}\right)_{1,2}=\left(E^{1,2}(\mathcal{A}+I)^{-1} \mathbf{f}, \boldsymbol{\psi}\right)_{1,2}
$$

However, using (4.1) and the fact that $E^{-1,2}$ is adjoint to $E^{1,2}$, we also have

$$
\left\langle\mathbf{f}, E^{1,2} \boldsymbol{\psi}\right\rangle_{\Omega}=\left\langle E^{-1,2} \mathbf{f}, \boldsymbol{\psi}\right\rangle_{\Omega}=\left((\mathcal{A}+I)^{-1} E^{-1,2} \mathbf{f}, \boldsymbol{\psi}\right)_{1,2}
$$

for all $\mathbf{f} \in \mathbf{W}_{0}^{-1,2}(\Omega)$ and $\boldsymbol{\psi} \in \mathbf{W}_{0}^{1,2}(\Omega)$.
This shows that

$$
\begin{equation*}
E^{1,2}(\mathcal{A}+I)^{-1}=(\mathcal{A}+I)^{-1} E^{-1,2} \tag{4.3}
\end{equation*}
$$

Applying this identity and the orthogonality of projection $E^{1,2}$, we get

$$
\begin{aligned}
\left(E^{-1,2} \mathbf{f}, \mathbf{g}\right)_{-1,2} & =\left((\mathcal{A}+I)^{-1} E^{-1,2} \mathbf{f},(\mathcal{A}+I)^{-1} \mathbf{g}\right)_{1,2} \\
& =\left(E^{1,2}(\mathcal{A}+I)^{-1} \mathbf{f},(\mathcal{A}+I)^{-1} \mathbf{g}\right)_{1,2} \\
& =\left((\mathcal{A}+I)^{-1} \mathbf{f}, E^{1,2}(\mathcal{A}+I)^{-1} \mathbf{g}\right)_{1,2} \\
& =\left((\mathcal{A}+I)^{-1} \mathbf{f},(\mathcal{A}+I)^{-1} E^{-1,2} \mathbf{g}\right)_{1,2} \\
& =\left(\mathbf{f}, E^{-1,2} \mathbf{g}\right)_{-1,2}
\end{aligned}
$$

for all $\mathbf{f}, \mathbf{g} \in \mathbf{W}_{0}^{-1,2}(\Omega)$, which shows that projection $E^{-1,2}$ is orthogonal, too.

Finally, let $\phi \in C_{0}^{\infty}(\Omega)$. Then

$$
(\mathcal{A}+I) \nabla \phi \equiv \nabla(-\Delta+I) \phi \in \mathbf{W}_{0, \sigma}^{1,2}(\Omega)^{\perp}
$$

Hence

$$
E^{-1,2}(\mathcal{A}+I) \nabla \phi=(\mathcal{A}+I) \nabla \phi
$$

Moreover, applying (4.3), we also have

$$
E^{-1,2}(\mathcal{A}+I) \nabla \phi=(\mathcal{A}+I) E^{1,2} \phi
$$

As $\mathcal{A}+I$ is a one-to-one operator from $\mathbf{W}_{0}^{1,2}(\Omega)$ to $\mathbf{W}_{0}^{-1,2}(\Omega)$, the last two equalities show that

$$
\begin{equation*}
E^{1,2} \nabla \phi=\nabla \phi \quad \text { for all } \phi \in C_{0}^{\infty}(\Omega) \tag{4.4}
\end{equation*}
$$

We have $\mathbf{f} \in L^{2}\left(0, T ; \mathbf{W}_{0}^{-1,2}(\Omega)\right)$ in the definition of a weak solution.
We may identify \mathbf{f} with a distribution in Q_{T}, acting on functions $\boldsymbol{\phi} \in \mathbf{C}_{0}^{\infty}\left(Q_{T}\right)$ through the formula

$$
\begin{equation*}
\langle\langle\mathbf{f}, \boldsymbol{\phi}\rangle\rangle_{Q_{T}}:=\int_{0}^{T}\langle\mathbf{f}(t), \boldsymbol{\phi}(., t)\rangle_{\Omega} \mathrm{d} t . \tag{4.5}
\end{equation*}
$$

$\left(\langle\langle., .\rangle\rangle_{Q_{T}}\right.$ denotes the action of a distribution in Q_{T} on a function from $C_{0}^{\infty}\left(Q_{T}\right)$ or $\left.\mathbf{C}_{0}^{\infty}\left(Q_{T}\right).\right)$

Definition of an associated pressure. Let \mathbf{u} be a weak solution to the Navier-Stokes IBVP (3.1)-(3.4). If there exists a distribution p in Q_{T} such that \mathbf{u} and p satisfy the NavierStokes equation

$$
\begin{equation*}
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}+\nabla p=\nu \Delta \mathbf{u}+\mathbf{f} \tag{3.1}
\end{equation*}
$$

in the sense of distributions in Q_{T} then p is called a pressure, associated with the weak solution \mathbf{u}.

Existence of an associated pressure. Let \mathbf{u} be a weak solution to the IBVP (3.1)-(3.4). Due to Lemma 4 , item 1), equation (3.12) is equivalent to

$$
\mathbf{u}(t)-\mathbf{u}(0)+\int_{0}^{t} \mathscr{P}_{2}[\nu \mathcal{A} \mathbf{u}+\mathcal{B}(\mathbf{u}, \mathbf{u})-\mathbf{f}] \mathrm{d} \tau=\mathbf{0}
$$

for a.a. $t \in(0, T)$. Since $\mathbf{u}(t)$ and $\mathbf{u}(0)$ are in $\mathbf{L}_{\sigma}^{2}(\Omega)$, they coincide with $\mathscr{P}_{2} \mathbf{u}(t)$ and $\mathscr{P}_{2} \mathbf{u}(0)$, respectively. Hence

$$
\mathscr{P}_{2}\left(\mathbf{u}(t)-\mathbf{u}(0)+\int_{0}^{t}[\nu \mathcal{A} \mathbf{u}+\mathcal{B}(\mathbf{u}, \mathbf{u})-\mathbf{f}] \mathrm{d} \tau\right)=\mathbf{0}
$$

Define $\mathbf{F}(t) \in \mathbf{W}_{0}^{-1,2}(\Omega)$ by the formula

$$
\begin{equation*}
\mathbf{F}(t):=\mathbf{u}(t)-\mathbf{u}(0)+\int_{0}^{t}[\nu \mathcal{A} \mathbf{u}+\mathcal{B}(\mathbf{u}, \mathbf{u})-\mathbf{f}] \mathrm{d} \tau \tag{4.6}
\end{equation*}
$$

$\mathbf{F}(t)$ is an element of $\mathbf{W}_{0, \sigma}^{1,2}(\Omega)^{\perp}$. Hence $E^{-1,2} \mathbf{F}(t)=\mathbf{F}(t)$ and $\left(I-E^{-1,2}\right) \mathbf{F}(t)=\mathbf{0}$. Thus,

$$
\left\langle\mathbf{F}(t),\left(I-E^{1,2}\right) \boldsymbol{\psi}\right\rangle_{\Omega}=\left\langle\left(I-E^{-1,2}\right) \mathbf{F}(t), \boldsymbol{\psi}\right\rangle_{\Omega}=0
$$

for all $\boldsymbol{\psi} \in \mathbf{W}_{0}^{1,2}(\Omega)$.

It means that

$$
\left(I-E^{-1,2}\right) \mathbf{u}(t)-\left(I-E^{-1,2}\right) \mathbf{u}(0)+\int_{0}^{t}\left(I-E^{-1,2}\right)[\nu \mathcal{A} \mathbf{u}+\mathcal{B}(\mathbf{u}, \mathbf{u})-\mathbf{f}] \mathrm{d} \tau=\mathbf{0}
$$

holds as an equation in $\mathbf{W}_{0}^{-1,2}(\Omega)$. Applying Lemma 4 (with $\mathbf{X}=\mathbf{W}_{0}^{-1,2}(\Omega)$), we get

$$
\left[\left(I-E^{-1,2}\right) \mathbf{u}\right]^{\prime}+\left(I-E^{-1,2}\right)[\nu \mathcal{A} \mathbf{u}+\mathcal{B}(\mathbf{u}, \mathbf{u})-\mathbf{f}]=\mathbf{0}
$$

where $\left[\left(I-E^{-1,2}\right) \mathbf{u}\right]^{\prime}$ is the distributional derivative with respect to t of $\left(I-E^{-1,2}\right) \mathbf{u}$, as a function from $(0, T)$ to $\mathbf{W}_{0}^{-1,2}(\Omega)$. This yields

$$
\begin{equation*}
\mathbf{u}^{\prime}+\nu \mathcal{A} \mathbf{u}+\mathcal{B}(\mathbf{u}, \mathbf{u})=\mathbf{f}+\left[E^{-1,2} \mathbf{u}\right]^{\prime}+\nu E^{-1,2} \mathcal{A} \mathbf{u}+E^{-1,2} \mathcal{B}(\mathbf{u}, \mathbf{u})-E^{-1,2} \mathbf{f} \tag{4.7}
\end{equation*}
$$

Let $\Omega_{0} \subset \subset \Omega$ be a non-empty domain. By Lemma 3, there exist unique $p_{0}(t), p_{1}(t), p_{2}(t)$, $p_{3}(t)$ in $L_{p o t}^{2}(\Omega)$ such that

$$
\begin{array}{ll}
\nabla p_{0}(t)=-E^{-1,2} \mathbf{u}(t), & \nabla p_{1}(t)=-\nu E^{-1,2} \mathcal{A} \mathbf{u}(t), \\
\nabla p_{2}(t)=-E^{-1,2} \mathcal{B}(\mathbf{u}(t), \mathbf{u}(t)), & \nabla p_{3}(t)=E^{-1,2} \mathbf{f}(t) \tag{4.8}
\end{array}
$$

and $\int_{\Omega_{0}} p_{i}(t) \mathrm{d} \mathbf{x}=0(i=0,1,2,3)$ for a.a. $t \in(0, T)$.

Using (3.8) and the boundedness of projection $E^{-1,2}$, we get

$$
\begin{array}{ll}
\nabla p_{0} \in L^{\infty}\left(0, T ; \mathbf{W}_{0}^{-1,2}(\Omega)\right), & \nabla p_{1} \in L^{2}\left(0, T ; \mathbf{W}_{0}^{-1,2}(\Omega)\right) \\
\nabla p_{2} \in L^{4 / 3}\left(0, T ; \mathbf{W}_{0}^{-1,2}(\Omega)\right), & \nabla p_{3} \in L^{2}\left(0, T ; \mathbf{W}_{0}^{-1,2}(\Omega)\right) \tag{4.9}
\end{array}
$$

Hence

$$
\begin{array}{ll}
p_{0} \in L^{\infty}\left(0, T ; L_{l o c}^{2}(\Omega)\right), & p_{1} \in L^{2}\left(0, T ; L_{l o c}^{2}(\Omega)\right), \tag{4.10}\\
p_{2} \in L^{4 / 3}\left(0, T ; L_{l o c}^{2}(\Omega)\right), & p_{3} \in L^{2}\left(0, T ; L_{l o c}^{2}(\Omega)\right)
\end{array}
$$

Equation (4.7) shows that if we put

$$
\begin{equation*}
p:=\partial_{t} p_{0}+p_{1}+p_{2}+p_{3} \tag{4.11}
\end{equation*}
$$

where $\partial_{t} p_{0}$ is the distributional derivative of p_{0} with respect to t then

$$
\begin{gathered}
\int_{0}^{T} \int_{\Omega}\left[-\mathbf{u} \cdot \boldsymbol{\psi} \eta^{\prime}(t)+\nu \nabla \mathbf{u}: \nabla \boldsymbol{\psi} \eta(t)+\mathbf{u} \cdot \nabla \mathbf{u} \cdot \boldsymbol{\psi} \eta(t)\right] \mathrm{d} \mathbf{x} \mathrm{~d} t \\
\quad=\int_{0}^{T}\langle\mathbf{f}, \boldsymbol{\psi}\rangle_{\Omega} \eta(t) \mathrm{d} t+\int_{0}^{T} \int_{\Omega} p \operatorname{div} \boldsymbol{\psi} \eta(t) \mathrm{d} \mathbf{x} \mathrm{~d} t
\end{gathered}
$$

for all functions $\boldsymbol{\psi} \in \mathbf{W}_{0}^{1,2}(\Omega)$ and $\eta \in C_{0}^{\infty}((0, T))$.

Since the set of all finite linear combinations of functions of the type $\boldsymbol{\psi}(\mathbf{x}) \eta(t)$, where $\boldsymbol{\psi} \in \mathbf{W}_{0}^{1,2}(\Omega)$ and $\eta \in C_{0}^{\infty}((0, T))$, is dense in $\mathbf{C}_{0}^{\infty}\left(Q_{T}\right)$ in the topology of $L^{4 / 3}(0, T$; $\mathbf{W}_{0}^{-1,2}(\Omega)$), we also have
$\int_{0}^{T} \int_{\Omega}\left[-\mathbf{u} \cdot \partial_{t} \boldsymbol{\varphi}+\nu \nabla \mathbf{u}: \nabla \boldsymbol{\varphi}+\mathbf{u} \cdot \nabla \mathbf{u} \cdot \boldsymbol{\varphi}\right] \mathrm{d} \mathbf{x} \mathrm{d} t=\int_{0}^{T}\langle\mathbf{f}, \boldsymbol{\varphi}\rangle_{\Omega} \mathrm{d} t+\int_{0}^{T} \int_{\Omega} p \operatorname{div} \boldsymbol{\varphi} \mathrm{~d} \mathbf{x} \mathrm{~d} t$
for all $\boldsymbol{\varphi} \in \mathbf{C}_{0}^{\infty}\left(Q_{T}\right)$. This shows that the pair \mathbf{u}, p satisfies the Navier-Stokes equation (3.1) in the sense of distributions in Q_{T}.

For a.a. $t \in(0, T)$, the functions $p_{0}(t)$ and $p_{1}(t)$ are harmonic in Ω. This follows from the identities

$$
\begin{aligned}
\int_{\Omega} p_{0}(t) \Delta \phi \mathrm{d} \mathbf{x} & =-\left\langle\nabla p_{0}(t), \nabla \phi\right\rangle_{\Omega}=\left\langle E^{-1,2} \mathbf{u}(t), \nabla \phi\right\rangle_{\Omega}=\left\langle\mathbf{u}(t), E^{1,2} \nabla \phi\right\rangle_{\Omega} \\
& =\langle\mathbf{u}(t), \nabla \phi\rangle_{\Omega}=\int_{\Omega} \mathbf{u}(t) \cdot \nabla \phi \mathrm{d} \mathbf{x}=0 \quad\left(\text { for all } \phi \in C_{0}^{\infty}(\Omega)\right)
\end{aligned}
$$

(We have used (4.4).) Hence, by Weyl's lemma, $p_{0}(t)$ is a harmonic function in Ω. The fact that $p_{1}(t)$ is harmonic can be proven similarly.

Uniqueness of the associated pressure up to an additive distribution of the form (4.12). If G is a distribution in $(0, T)$ and $\psi \in \mathbf{C}_{0}^{\infty}\left(Q_{T}\right)$ then we define a distribution g in Q_{T} by the formula

$$
\begin{equation*}
\langle\langle g, \psi\rangle\rangle_{Q_{T}}:=\left\langle G, \int_{\Omega} \psi \mathrm{d} \mathbf{x}\right\rangle_{(0, T)}, \tag{4.12}
\end{equation*}
$$

where $\langle G, .\rangle_{(0, T)}$ denotes the action of distribution G on a function from $C_{0}^{\infty}((0, T))$. Obviously, if $\boldsymbol{\phi} \in \mathbf{C}_{0}^{\infty}\left(Q_{T}\right)$ then

$$
\begin{equation*}
\langle\langle\nabla g, \phi\rangle\rangle_{Q_{T}}=-\langle\langle g, \operatorname{div} \phi\rangle\rangle_{Q_{T}}=-\left\langle G, \int_{\Omega} \operatorname{div} \boldsymbol{\phi} \mathrm{d} \mathbf{x}\right\rangle_{(0, T)}=0 \tag{4.13}
\end{equation*}
$$

because $\int_{\Omega} \operatorname{div} \phi(., t) \mathrm{d} \mathbf{x}=0$ for all $t \in(0, T)$. Thus, $p+g$ (where p is given by (4.11)) is a pressure, associated with the weak solution u to the IBVP (3.1)-(3.4), too.

On the other hand, if $p+g$ is a pressure, associated with the weak solution \mathbf{u}, then g satisfies

$$
\begin{equation*}
0=\langle\langle\nabla g, \boldsymbol{\phi}\rangle\rangle_{Q_{T}}=-\langle\langle g, \operatorname{div} \boldsymbol{\phi}\rangle\rangle_{Q_{T}} \quad \text { for all } \boldsymbol{\phi} \in \mathbf{C}_{0}^{\infty}\left(Q_{T}\right) \tag{4.14}
\end{equation*}
$$

For $h \in C_{0}^{\infty}((0, T))$, define

$$
\begin{equation*}
\langle G, h\rangle_{(0, T)}:=\langle\langle g, \psi\rangle\rangle_{Q_{T}}, \tag{4.15}
\end{equation*}
$$

where $\psi \in C_{0}^{\infty}\left(Q_{T}\right)$ is chosen so that $h(t)=\int_{\Omega} \psi(\mathbf{x}, t) \mathrm{d} \mathbf{x}$ for all $t \in(0, T)$.
The definition of the distribution G is independent of the concrete choice of function ψ due to these reasons:

Let ψ_{1} and ψ_{2} be two functions from $C_{0}^{\infty}\left(Q_{T}\right)$ such that

$$
h(t)=\int_{\Omega} \psi_{1}(\mathbf{x}, t) \mathrm{d} \mathbf{x}=\int_{\Omega} \psi_{2}(\mathbf{x}, t) \mathrm{d} \mathbf{x} \quad \text { for } t \in(0, T)
$$

Denote by G_{1}, respectively G_{2}, the distribution, defined by formula (4.15) with $\psi=\psi_{1}$, respectively $\psi=\psi_{2}$.

Since $\operatorname{supp}\left(\psi_{1}-\psi_{2}\right)$ is a compact subset of Q_{T} and

$$
\int_{\Omega}\left[\psi_{1}(., t)-\psi_{2}(., t)\right] \mathrm{d} \mathbf{x}=0 \quad \text { for all } t \in(0, T)
$$

there exists a function $\boldsymbol{\phi} \in \mathbf{C}_{0}^{\infty}\left(Q_{T}\right)$ such that $\operatorname{div} \boldsymbol{\phi}=\psi_{1}-\psi_{2}$ in Q_{T}.

Then

$$
\left\langle G_{1}-G_{2}, h\right\rangle_{(0, T)}:=\left\langle\left\langle g, \psi_{1}-\psi_{2}\right\rangle\right\rangle_{Q_{T}}=\langle\langle g, \operatorname{div} \phi\rangle\rangle_{Q_{T}},
$$

which is equal to zero due to (4.14). Formula (4.15) and the identity $h(t)=\int_{\Omega} \psi(\mathbf{x}, t) \mathrm{d} \mathbf{x}$ show that the distribution g has the form (4.12).

The next theorem summarizes the derived results:

Theorem 1. Let \mathbf{u} be a weak solution to the Navier-Stokes IBVP (3.1)-(3.4). Then there exists an associated pressure p (as a distribution in Q_{T}) of the form (4.11), where $p_{0}, p_{2}, p_{3}, p_{4}$ satisfy (4.8)-(4.10). Moreover,

1) if $\Omega_{0} \subset \subset \Omega$ then the functions $p_{0}(t), \ldots, p_{3}(t)$ can be chosen uniquely so that they satisfy the additional conditions $\int_{\Omega_{0}} p_{i}(t) \mathrm{d} \mathrm{x}=0$ for $i=0,1,2,3$ and a.a. $t \in$ $(0, T)$,
2) the functions $p_{0}(t)$ and $p_{1}(t)$ are harmonic in Ω for a.a. $t \in(0, T)$,
3) $p+g$ is also a pressure, associated with the weak solution \mathbf{u}, if and only if g is a distribution of the form (4.12).

Remark. If Ω is a bounded Lipschitz domain then the statement of Theorem 1 can be improved so that $L_{l o c}^{2}(\Omega)$ is replaced by $L^{2}(\Omega)$ in (4.10) and the choice $\Omega_{0}=\Omega$ is also permitted in statement 2). This is enabled by Lemma 2, which shows that the range of projection $E^{-1,2}$ coincides with $\nabla\left(L^{2}(\Omega)\right)$.

Analogous results for the Navier-Stokes equations with Navier's boundary conditions

$$
\text { a) } \mathbf{u} \cdot \mathbf{n}=0, \quad \text { b) }[\mathbb{T} \cdot \mathbf{n}]_{\tau}+\gamma \mathbf{u}=\mathbf{0}
$$

see [6] (Š. Nečasová, J. Neustupa, P. Kučera), 2020.

Example. We give an example of a simple distributional solution to the system (3.1), (3.2), that is not smooth in dependence on t and the associated pressure cannot be identified with a function from $L_{l o c}^{1}\left(Q_{T}\right)$.
Although the solution does not satisfy the boundary condition (3.3), the example sheds light on the reasons why the pressure generally exists only as a distribution and not as a function.

Let $\psi \in \mathbf{W}^{2,2}(\Omega)$ be a harmonic function in Ω and $a(t) \in L^{\infty}(0, T)$. Put

$$
\begin{aligned}
& \mathbf{u}(\mathbf{x}, t):=a(t) \nabla \psi(\mathbf{x}) \\
& p(\mathbf{x}, t):=-a^{\prime}(t) \psi(\mathbf{x})-a^{2}(t) \frac{|\psi(\mathbf{x})|^{2}}{2}
\end{aligned}
$$

for $\mathrm{x} \in \Omega$ and $0 \leq t<T$.
Function \mathbf{u} is divergence-free and the pair \mathbf{u}, p satisfies the Navier-Stokes equation (3.1) (with $\mathbf{f}=\mathbf{0}$) in the sense of distributions in Q_{T}.
If $a(t)$ is chosen so that the derivative $a^{\prime}(t)$ exists only as a distribution in $(0, T)$ that cannot be identified with a function from $L_{l o c}^{1}((0, T))$ then p is a distribution in Q_{T} that cannot be identified with a function from $L_{l o c}^{1}\left(Q_{T}\right)$.

5. An associated pressure in the case of a smooth domain

The next theorem follows from Theorem 3.1 in [4] (Y. Giga and H. Sohr, 1991):

Theorem 2. LET Ω be a bounded or exterior domain in \mathbb{R}^{3} with the boundary of the class $C^{2+(h)}$ for some $h>0$, or a half-space in \mathbb{R}^{3} or the whole space \mathbb{R}^{3}.
LET $0<T \leq \infty, 1<s<\frac{3}{2}, 1<r<2,2 / r+3 / s=4, \mathbf{f} \in L^{r}\left(0, T ; \mathbf{L}^{s}(\Omega)\right) \cap$ $L^{2}\left(0, T ; \mathbf{L}^{2}(\Omega)\right)$ and $\mathbf{u}_{0} \in \mathbf{W}^{2, s}(\Omega) \cap \mathbf{W}_{0, \sigma}^{1, s}(\Omega) \cap \mathbf{L}_{\sigma}^{2}(\Omega)$.
LET u be a weak solution to the Navier-Stokes IBVP (3.1)-(3.4) and p be an associated pressure.
THEN $\mathbf{u} \in L^{r}\left(0, T_{0} ; \mathbf{W}^{2, s}(\Omega)\right)$ for each $0<T_{0} \leq T, T_{0}<\infty$ and function p can be chosen so that it belongs to $L^{r}\left(0, T ; L^{3 s /(3-s)}(\Omega)\right)$. Functions \mathbf{u}, p satisfy the equations (3.1), (3.2) a.e. in Q_{T}.

Remark. The pressure p is determined uniquely up to an additive function $g \in L^{r}(0, T)$. The choice $r=\frac{5}{3}, s=\frac{15}{14}$ in Theorem 2 yields $p \in L^{5 / 3}\left(Q_{T}\right)$.

6. A pressure, associated with a suitable or dissipative weak solution

Briefly on suitable weak solutions. If Ω is a smooth domain then a series of authors have shown that the problem (3.1)-(3.4) has the so called suitable weak solution, which is a pair of functions \mathbf{u}, p such that \mathbf{u} is a weak solution, p is an associated pressure, and \mathbf{u}, p satisfy the generalized energy inequality

$$
\begin{align*}
2 \nu \int_{0}^{T} \int_{\Omega}|\nabla \mathbf{u}|^{2} \phi \mathrm{~d} \mathbf{x} \mathrm{~d} t \leq & \int_{0}^{T} \int_{\Omega}\left[|\mathbf{u}|^{2}\left(\partial_{t} \phi+\nu \Delta \phi\right)+\left(|\mathbf{u}|^{2}+2 p\right) \mathbf{u} \cdot \nabla \phi\right] \mathrm{d} \mathbf{x} \mathrm{~d} t \\
& +2 \int_{0}^{T}\langle\mathbf{f}, \mathbf{u} \phi\rangle_{\Omega} \mathrm{d} t \tag{6.1}
\end{align*}
$$

for every non-negative scalar function ϕ with a compact support in Q_{T}. This inequality is also often called the local (or localized) energy inequality.

In order to give a reasonable sense to the integral of $2 p \mathbf{u} \cdot \nabla \phi$ in (6.1), it is necessary to include some assumptions on the integrability of p to the definition of a suitable weak solution: most of the authors consider $p \in L^{3 / 2}\left(Q_{T}\right)$ or $p \in L^{5 / 3}\left(Q_{T}\right)$.

The first results of this type: L. Caffarelli, R. Kohn, L. Nirenberg [1], 1982.
The local energy inequality enables one to derive a series of "local regularity criteria", i.e. criteria for regularity of the suitable weak solution at just one point.

Recall that $\left(\mathbf{x}_{0}, t_{0}\right)$ is said to be a regular point of solution \mathbf{u} if there exists a neighborhood $U\left(\mathbf{x}_{0}, t_{0}\right)$ in Q_{T} such that \mathbf{u} is essentially bounded in $U\left(\mathbf{x}_{0}, t_{0}\right)$.

Example: There exists $\epsilon>0$ such that if $\left(\mathbf{x}_{0}, t_{0}\right) \in Q_{T}$ and \mathbf{u} is a suitable weak solution to the problem (3.1)-(3.4), satisfying

$$
\begin{equation*}
\limsup _{r \rightarrow 0+} \frac{1}{r} \int_{t_{0}-r^{2}}^{t_{0}} \int_{B_{r}\left(\mathbf{x}_{0}\right)}|\nabla \mathbf{u}|^{2} \mathrm{~d} \mathbf{x} \mathrm{~d} t<\epsilon \tag{6.2}
\end{equation*}
$$

then $\left(\mathrm{x}_{0}, t_{0}\right)$ is a regular point of solution \mathbf{u}.
There exist many modifications or generalizations of this criterion. For example, the same proposition also holds if $|\nabla \mathbf{u}|$ is replaced by $|\mathbf{c u r l} \mathbf{u} \times(\mathbf{u} /|\mathbf{u}|)|$, see J. Wolf [9].

The criterion (6.2) can be used in order to prove that the set of hypothetic singular points of solution \mathbf{u} (i.e. points of Q_{T} that are not regular) has the one-dimensional Hausdorff measure of the set of singular points is also zero.

Remark. Note that if \mathbf{f} is e.g. in $\mathbf{L}^{10 / 7}\left(Q_{T}\right)$ then $\mathbf{f} \cdot \mathbf{u} \in L^{1}\left(Q_{T}\right)$. Thus, the quantity

$$
\begin{equation*}
\mu:=-\partial_{t}|\mathbf{u}|^{2}+\nu \Delta|\mathbf{u}|^{2}-2 \nu|\nabla \mathbf{u}|^{2}-\operatorname{div}\left(|\mathbf{u}|^{2} \mathbf{u}\right)-2 \operatorname{div}(p \mathbf{u})+2 \mathbf{f} \cdot \mathbf{u} \tag{6.3}
\end{equation*}
$$

is well defined as a distribution in Q_{T}. In this case, (6.1) means that $\mu \geq 0$ in Q_{T}, which means that $\langle\langle\mu, \phi\rangle\rangle_{Q_{T}} \geq 0$ for all $\phi \in C_{0}^{\infty}\left(Q_{T}\right), \phi \geq 0$.

Briefly on a dissipative weak solution. This notion comes from D. Chamorro, P.-G. Lemarié-Riusset and K. Mayoufi [2], 2018.

The authors show that if \mathbf{u}, p is a distributional solution of the Navier-Stokes system (3.1), (3.2) in $Q:=B_{\rho}\left(\mathbf{x}_{0}\right) \times(a, b)$ (where $\rho>0$ and $-\infty<a<b<\infty$) such that $\mathbf{u} \in L^{\infty}\left(a, b ; \mathbf{L}^{2}\left(B_{\rho}\left(\mathbf{x}_{0}\right)\right)\right) \cap L^{2}\left(a, b ; \mathbf{W}^{1,2}\left(B_{\rho}\left(\mathbf{x}_{0}\right)\right)\right)$ then the product $p \mathbf{u}$ exists as a distribution in Q.

Then they define a dissipative weak solution \mathbf{u}, p to the system (3.1), (3.2) in Q to be a distributional solution of (3.1), (3.2) in Q, such that $\mathbf{u} \in L^{\infty}\left(a, b ; \mathbf{L}^{2}\left(B_{\rho}\left(\mathbf{x}_{0}\right)\right)\right) \cap$ $L^{2}\left(a, b ; \mathbf{W}^{1,2}\left(B_{\rho}\left(\mathbf{x}_{0}\right)\right)\right)$ and $\mu \geq 0$ in Q.

It is proven in [2] that if \mathbf{u} is a dissipative weak solution in some neighborhood of (\mathbf{x}_{0}, t_{0}) then it satisfies the same regularity criterion (6.2) as the suitable weak solution.

References

1. L. Caffarelli, R. Kohn, L. Nirenberg: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. on Pure and Appl. Math. 35 (1982), 771-831.
2. D. Chamorro, P.-G. Lemarié-Riusset, K. Mayoufi: The role of pressure in the partial regularity theory for weak solutions of the Navier-Stokes equations. Arch. Rat. Mech. Anal. 228 (2018), 237-277.
3. G. P. Galdi: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. 2nd edition, Springer 2011.
4. Y. Giga, H. Sohr: Abstract L^{p}-estimates for the Cauchy problem with applications to the NavierStokes equations in exterior domains. J. Functional Analysis 102 (1991), 72-94.
5. J. Neustupa: The role of pressure in the theory of weak solutions of the Navier-Stokes equations. In Fluids Under Pressure, eds. T. Bodnár, G. P. Galdi, Š. Nečasová, Birkhäuser, 2020, pp. 349-416.
6. J. Neustupa, Š. Nečasová, P. Kučera: A pressure associated with a weak solution to the NavierStokes equations with Navier's boundary conditions. J. Math. Fluid Mech. 22 (2020), article number 37, https://doi.org/10.1007/s00021-020-00500-y.
7. H. Sohr: The Navier-Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts, Basel-Boston-Berlin 2001.
8. R. Temam: Navier-Stokes Equations. North-Holland, Amsterdam-New York-Oxford 1977.
9. J. Wolf: A direct proof of the Caffarelli-Kohn-Nirenberg theorem. Parabolic and Navier-Stokes equations, Banach Center Publ. 81, Part 2, Polish Acad. of Sci., Inst. Math., Warsaw 2008, 533-552.
