Brownian Motions, Itô Calculus, and SDE

Hyunchul Park, SUNY New Paltz
May 1, 2022

Contents

I Introduction 1
II Warming Up - What Can One Prove in Analysis using Probability? 3
1 Stone-Weierstrass Theorem 5
III Construction of Brownian Motions 7
$2 \quad L^{1}$-method; Broken Line Approximation 9
2.1 Observation on the Sample Paths of Brownian Motions 9
2.2 Reconstruction of Sample Paths using Broken-Line Approximation 10
2.3 Exercises 12
$3 L^{2}$-method; Gaussian White Noise 15
4 Probabilistic Solution to Dirichlet Problem 21
IV Stochastic Integrals with respect to Brownian Motions 25
5 Stochastic Integral with respect to Brownian Motions 27
5.1 Exercises 31
6 Itô Theorem 33
V Stochastic Differential Equations 37
7 Examples-Geometric Brownian Motions and OU Processes 39
8 Existence and Uniqueness Theorem of SDE 43
VI Bibliography 47

Part I

Introduction

Part II

Warming Up - What Can One Prove in Analysis using Probability?

Chapter 1

Stone-Weierstrass Theorem

Probability is one branch of mathematics that studies randomness. It has close connections to other areas of mathematics and is very useful to solve problems in different areas of mathematics. As an illustration, we prove the Stone-Weierstrass theorem using binomial distributions and Chebyshev inequality.
Here is a statement of the theorem.
Theorem 1.0.1. Let $f(x)$ be continuous on $[0,1]$. Then, for any $\epsilon>0$ there exists a polynomial $B_{n}(x)$ such that

$$
\sup _{x \in[0,1]}\left|f(x)-B_{n}(x)\right|<\epsilon .
$$

Proof. Let X_{i} be iid Bernoulli random variables with $\mathbb{P}\left(X_{i}=1\right)=p \in(0,1)$ and $S_{n}=$ $X_{1}+\cdots X_{n}$. Note that the distribution of S_{n} is a binomial distribution with parameters n and p. We define

$$
B_{n}(p):=\mathbb{E}\left[f\left(\frac{S_{n}}{n}\right)\right]=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Since $f(x)$ is uniformly continuous on $[0,1]$, for given $\epsilon>0$ there exists a $\delta=\delta(\epsilon)>0$ such that

$$
|f(x)-f(y)|<\epsilon \text { if }|x-y|<\delta
$$

Let $K=\sup _{x \in[0,1]}|f(x)|<\infty$. Then, we have

$$
\begin{aligned}
& \left|B_{n}(p)-f(p)\right|=\left|\mathbb{E}\left[f\left(\frac{S_{n}}{n}\right)\right]-f(p)\right| \\
\leq & \mathbb{E}\left[\left|f\left(\frac{S_{n}}{n}\right)-f(p)\right|\right] \\
\leq & \mathbb{E}\left[\left|f\left(\frac{S_{n}}{n}\right)-f(p)\right|,\left|\frac{S_{n}}{n}-p\right|<\delta\right]+\mathbb{E}\left[\left|f\left(\frac{S_{n}}{n}\right)-f(p)\right|,\left|\frac{S_{n}}{n}-p\right| \geq \delta\right] .
\end{aligned}
$$

Note that

$$
\mathbb{E}\left[\left|f\left(\frac{S_{n}}{n}\right)-f(p)\right|,\left|\frac{S_{n}}{n}-p\right|<\delta\right] \leq \epsilon \mathbb{P}\left(\left|\frac{S_{n}}{n}-p\right|<\delta\right) \leq \epsilon
$$

By the Chebyshev inequality and the fact that $\operatorname{Var}\left(S_{n}\right)=\frac{n \operatorname{Var}\left(X_{1}\right)}{n^{2}}=\frac{p(1-p)}{n} \leq \frac{1}{4 n}$, we have

$$
\mathbb{E}\left[\left|f\left(\frac{S_{n}}{n}\right)-f(p)\right|,\left|\frac{S_{n}}{n}-p\right| \geq \delta\right] \leq 2 K \mathbb{P}\left(\left|\frac{S_{n}}{n}-p\right| \geq \delta\right) \leq \frac{2 K}{\delta^{2}} \operatorname{Var}\left(\frac{S_{n}}{n}\right) \leq \frac{K}{2 n \delta^{2}}
$$

Now take n large so that $\frac{K}{2 n \delta^{2}}<\epsilon$ and we obtain

$$
\sup _{p \in[0,1]}\left|B_{n}(p)-f(p)\right|<2 \epsilon .
$$

Part III

Construction of Brownian Motions

Chapter 2

L^{1}-method; Broken Line Approximation

A Brownian motion or Wiener process is a stochastic process that satisfies the following conditions:
(1) $B_{0}=0$ a.s.;
(2) the increments $B_{t}-B_{s}$ have $N(0, t-s)$ distribution for all $0 \leq s \leq t$;
(3) the increments $B_{t_{2}}-B_{t_{1}}$ and $B_{t_{4}}-B_{t_{3}}$ are independent whenever $0 \leq t_{1} \leq t_{2} \leq t_{3} \leq$ t_{4};
(4) the trajectories $t \rightarrow B_{t}$ are a.s. continuous.

The first question we must answer is if there exist such processes?

2.1 Observation on the Sample Paths of Brownian Motions

We start with a simple observation on the sample path of Brownian motions. Let $B=\left\{B_{t}\right\}_{t \geq 0}$ be a Brownian motions. Then, for each $t>0$ we have

$$
\left\{\begin{array}{l}
B_{t}=B_{t / 2}+\left(B_{t}-B_{t / 2}\right)=B_{t / 2}+\tilde{B}_{t / 2} \\
B_{t / 2}=\frac{1}{2} B_{t}+\frac{1}{2}\left(B_{t / 2}-\tilde{B}_{t / 2}\right)
\end{array}\right.
$$

where $\tilde{B}_{t}=B_{t}-B_{t / 2}$. Hence, B_{t} is a sum of independent normal random variables with variance $\frac{t}{2}$, and $B_{t / 2}$ is a sum of $\frac{1}{2} B_{t}$ and $\frac{1}{2}\left(B_{t / 2}-\tilde{B}_{t / 2}\right)$, which is independent of $B_{t / 2}+\tilde{B}_{t / 2}$ as one can see from the following simple fact.

Lemma 2.1.1. Let X and Y are independent normal distributions with parameters O and σ^{2}. Then, $X+Y$ and $X-Y$ are independent $N\left(0,2 \sigma^{2}\right)$ distributions.

Proof. Note that

$$
\mathbb{E}\left[e^{i \xi X}\right]=\mathbb{E}\left[e^{i \xi Y}\right]=e^{-\frac{\sigma^{2}|\xi|^{2}}{2}}
$$

Hence, we have

$$
\mathbb{E}\left[e^{i \xi_{1}(X+Y)} e^{i \xi_{2}(X-Y)}\right]=\mathbb{E}\left[e^{i\left(\xi_{1}+\xi_{2}\right) X} e^{i\left(\xi_{1}-\xi_{2}\right) Y}\right]=e^{-\frac{\sigma^{2}\left(\xi_{1}+\xi_{2}\right)^{2}}{2}} e^{-\frac{\sigma^{2}\left(\xi_{1}-\xi_{2}\right)^{2}}{2}}=e^{-\sigma^{2}\left|\xi_{1}\right|^{2}} e^{-\sigma^{2}\left|\xi_{2}\right|^{2}}
$$

2.2 Reconstruction of Sample Paths using Broken-Line Approximation

Now let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with independent normal distributions Y_{0} and $Y_{n}^{k}, n \in \mathbb{N}$, $k \in\left\{1,2, \cdots, 2^{n-1}\right\}$ with $\operatorname{Var}\left(Y_{n}^{k}\right)=\frac{1}{2^{n+1}}$
(1) We define $X_{0}(t), t \in[0,1]$ as

$$
X_{0}(t)=t Y_{0}
$$

(2) We define $X_{1}(t)$ as

$$
\left\{\begin{array}{l}
X_{1}(0)=0 \\
X_{1}(1)=X_{0}(1)=Y_{0} \\
X_{1}\left(\frac{1}{2}\right)=\frac{1}{2} Y_{0}+Y_{1}^{1}=X_{0}\left(\frac{1}{2}\right)+Y_{1}^{1} \\
X_{1}(t) \text { is linear between these points. }
\end{array}\right.
$$

(3) In general, we repeat the process as follows:

$$
\left\{\begin{array}{l}
X_{n}(0)=0 \\
X_{n}(1)=Y_{0} \\
X_{n}\left(\frac{2 k-1}{2^{n}}\right)=X_{n-1}\left(\frac{2 k-1}{2^{n}}\right)+Y_{n}^{k} \\
X_{n}(t) \text { is linear between these points. }
\end{array}\right.
$$

(4) Note that by the construction we have

$$
X_{n}\left(\frac{2 k-1}{2^{n}}\right)-X_{n}\left(\frac{2 k-2}{2^{n}}\right)=\frac{1}{2}\left(X_{n-1}\left(\frac{k}{2^{n-1}}\right)-X_{n-1}\left(\frac{k-1}{2^{n-1}}\right)\right)+Y_{n}^{k}
$$

and

$$
X_{n}\left(\frac{k}{2^{n-1}}\right)-X_{n}\left(\frac{2 k-1}{2^{n}}\right)=\frac{1}{2}\left(X_{n-1}\left(\frac{k}{2^{n-1}}\right)-X_{n-1}\left(\frac{k-1}{2^{n-1}}\right)\right)-Y_{n}^{k}
$$

Note that the variance of the two expressions above are both $\frac{1}{4} \frac{1}{2^{n-1}}+\frac{1}{2^{n+1}}=\frac{1}{2^{n}}$ and the two are independent of each other from Lemma 2.1.1
(5) Note that

$$
\begin{aligned}
& \sup _{t \in[0,1]}\left|X_{n}(t)-X_{n-1}(t)\right| \leq \max _{1 \leq k \leq 2^{n-1}}\left|X_{n}\left(\frac{k}{2^{n}}\right)-X_{n-1}\left(\frac{k}{2^{n}}\right)\right| \\
= & \max _{1 \leq k \leq 2^{n-1}}\left|Y_{n}^{k}\right| \leq\left(\sum_{k=1}^{2^{n-1}}\left|Y_{n}^{k}\right|^{4}\right)^{1 / 4},
\end{aligned}
$$

and by Jensen's inequality we have

$$
\begin{aligned}
& \mathbb{E}\left[\sup _{t \in[0,1]}\left|X_{n}(t)-X_{n-1}(t)\right|\right] \leq \mathbb{E}\left[\left(\sum_{k=1}^{2^{n-1}}\left|Y_{n}^{k}\right|^{4}\right)^{1 / 4}\right] \leq \mathbb{E}\left[\sum_{k=1}^{2^{n-1}}\left|Y_{n}^{k}\right|^{4}\right]^{1 / 4} \\
& \leq\left(2^{n-1} c\left(\frac{1}{2^{n+1}}\right)^{2}\right)^{1 / 4}=c^{1 / 4} 2^{-\frac{n+3}{4}}
\end{aligned}
$$

where we used the fact that $\mathbb{E}\left[N^{2 n}\right]=c_{n} \sigma^{2 n}$ for $N \sim N\left(0, \sigma^{2}\right)$ and some constant c_{n}. This implies that

$$
\sum_{n=1}^{\infty} \mathbb{E}\left[\sup _{t \in[0,1]}\left|X_{n}(t)-X_{n-1}(t)\right|\right]<\infty
$$

This shows the following.
Theorem 2.2.1. The processes $X_{n}(t)$ converge a.s. and in L^{1} to a continuous process $X(t)$ so that

$$
\mathbb{E}\left[\sup _{t \in[0,1]}\left|X_{n}(t)-X(t)\right|\right] \rightarrow 0, \quad n \rightarrow \infty
$$

and also a.s.

$$
\sup _{t \in[0,1]}\left|X_{n}(t)-X(t)\right| \rightarrow 0, \quad n \rightarrow \infty
$$

The limiting process $X(t)$ is a standard Brownian Motion on $[0,1]$.

2.3 Exercises

(1) Let X be a standard normal distribution.
(a) Show that the moment generating function is $M_{X}(\lambda)=\mathbb{E}\left[e^{\lambda X}\right]=e^{\frac{\lambda^{2}}{2}}$ for all $\lambda \in \mathbb{R}$.
(b) Show that

$$
\mathbb{E}\left[X^{2 n+1}\right]=0, \quad \mathbb{E}\left[X^{2 n}\right]=\frac{(2 n)!}{2^{n} n!}, n \in \mathbb{N}
$$

(2) Prove Theorem 2.2.1 as follows:
(a) Show that $\left\{X_{n}(t)\right\}$ is uniformly Cauchy in $L^{1}(\Omega, \mathbb{P})$, that is, for any $\epsilon>0$ there exists $N=N(\epsilon)$ such that

$$
\mathbb{E}\left[\left|X_{n}(t)-X_{m}(t)\right|\right]<\epsilon \text { for all } n, m \geq N \text { and } t \in[0,1] .
$$

Hence, $X_{t}=\lim _{n \rightarrow \infty} X_{n}(t)$ exists in $L^{1}(\Omega, \mathbb{P})$ and $\lim _{n \rightarrow \infty} \mathbb{E}\left[\sup _{t \in[0,1]}\left|X_{n}(t)-X(t)\right|\right]=0$.
(b) Let N be a standard normal random variable. Then, for any constant $A>0$ we have

$$
\mathbb{P}(|N| \geq A) \leq e^{-\frac{A^{2}}{2}}
$$

Solution.

$$
\begin{aligned}
& \mathbb{P}(N \geq A)=\int_{A}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x=\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{(x+A)^{2}}{2}} d x \\
= & \int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \times e^{-\frac{2 x A+A^{2}}{2}} d x \\
\leq & \int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \times e^{-\frac{A^{2}}{2}} d x=\frac{1}{2} \times e^{-\frac{A^{2}}{2}} .
\end{aligned}
$$

(c) Use Borel-Cantelli Lemma to show that for a.e. $\omega \in \Omega$ there exists $N=N(\omega)$ such that

$$
\left|Y_{n}^{k}\right| \leq \sqrt{n} 2^{-\frac{n+1}{2}} \text { for all } n \geq N(\omega)
$$

Solution. Note that

$$
\mathbb{P}\left(2^{\frac{n+1}{2}}\left|Y_{n}^{k}\right| \geq \sqrt{n}\right) \leq e^{-\frac{n}{2}} \text { for all } n \geq 1,
$$

and by Borel-Cantelli Lemma the result follows.
(d) Show that $X_{n}(t)$ converges uniformly to X_{t} a.s. (Hence, $t \rightarrow X_{t}$ is continuous a.s.).

Solution. From the previous question, for a.e. ω there exists $N(\omega)$ such that for all $n \geq N$

$$
\sup _{t \in[0,1]}\left|X_{n}(t)-X_{n-1}(t)\right| \leq \max _{1 \leq k \leq 2^{n-1}}\left|X_{n}\left(\frac{k}{2^{n}}\right)-X_{n-1}\left(\frac{k}{2^{n}}\right)\right| \leq=\max _{1 \leq k \leq 2^{n-1}}\left|Y_{n}^{k}\right| \leq \sqrt{n} 2^{-\frac{n+1}{2}} .
$$

(e) Show that $X_{t+s}-X_{t}$ is independent of $\sigma\left(X_{u}, u \leq t\right)$ and has $N(0, s)$ distribution.

Solution. It is enough to show that

$$
\mathbb{E}\left[e^{i \xi_{1}\left(X_{t+s}-X_{t}\right)} e^{i \xi_{2} X_{u}}\right]=e^{-\frac{\xi_{1}^{2}}{2} s} e^{-\frac{\xi_{2}^{2}}{2} u} \text { for any } u \leq t \text { and } \xi_{1}, \xi_{2} \in \mathbb{R}
$$

This is true if all t, s, u are dyadic integers. For a general case, take sequences of dyadic integers $\left\{t_{n}\right\},\left\{s_{n}\right\}$ and $\left\{u_{n}\right\}$ such that $\lim t_{n}=t, \lim s_{n}=$ $s, \lim u_{n}=u$. By continuity, $\lim X_{t_{n}}=X_{t}, \lim X_{s_{n}}=X_{s}$, and $\lim X_{u_{n}}=X_{u}$ and it follows from the dominated convergence theorem

$$
\begin{aligned}
& \mathbb{E}\left[e^{i \xi_{1}\left(X_{t+s}-X_{t}\right)} e^{i \xi_{2} X_{u}}\right]=\lim _{n \rightarrow \infty} \mathbb{E}\left[e^{i \xi_{1}\left(X_{t_{n}+s_{n}}-X_{t_{n}}\right)} e^{i \xi_{2} X_{u_{n}}}\right] \\
= & \lim _{n \rightarrow \infty} e^{-\frac{\xi_{1}^{2}}{2} s_{n}} e^{-\frac{\xi_{2}^{2}}{2} u_{n}}=e^{-\frac{\xi_{1}^{2}}{2} s} e^{-\frac{\xi_{2}^{2}}{2} u} .
\end{aligned}
$$

Chapter 3

L^{2}-method; Gaussian White Noise

Now we turn our attention to constructing Brownian motions. We will construct the Gaussian white noise, which is an isometry from $L^{2}([0,1], d x)$ into a space of centered Gaussian distributions. Brownian motions $W=\left\{W_{t}\right\}_{t \geq 0}$ will be constructed as an image of $1_{[0, t]}(x)$ under this Gaussian white noise.
For every $t \in[0,1]$, we define Haar functions

$$
h_{0}(t)=1, \quad t \in[0,1],
$$

and

$$
h_{k}^{n}(t)=2^{n / 2} \times 1_{\left\{\left[\frac{2 k}{2^{n+1}}, \frac{2 k+1}{2^{n+1}}\right)\right\}}(t)-2^{n / 2} \times 1_{\left\{\left[2^{n+1}, \frac{2 k+1}{2^{n+1}}\right)\right\}}(t),
$$

where $n \in\{0,1,2, \cdots\}$ and $k \in\left\{0,1,2, \cdots, 2^{n}-1\right\}$.

Show that $\left\{h_{0}, h_{k}^{n}\right\}, n \in\{0,1,2, \cdots\}$ and $k \in\left\{0,1,2, \cdots, 2^{n}-1\right\}$ form an orthonormal basis for $L^{2}([0,1], \mathcal{B}[0,1], d t)$.
(1)

Proof. It is enough to show that for any step function $f(x)$ which has constant values on intervals of the form $\left[\frac{k-1}{2^{n}}, \frac{k}{2^{n}}\right), k \in\left\{1,2, \cdots, 2^{n}\right\}$ can be represented as a linear combination of h_{0} and $h_{k}^{j}, j \in\{0,1,2, \cdots, n-1\}$ since polynomials can be approximated by these step functions and by Stone-Weierstrass Theorem (Theorem 1.0.1) polynomials are dense in the space of continuous functions for uniform norm on $[0,1]$.
We prove this using a mathematical induction. This is trivial when $n=0$. Suppose this holds for some $n-1$. Let $f(x)$ be a step function whose values are constants on intervals of the form $\left[\frac{k-1}{2^{n+1}}, \frac{k}{2^{n+1}}\right), k \in\left\{1,2, \cdots, 2^{n+1}\right\}$. Define an ancestor $\tilde{f}(x)$ of $f(x)$ whose values are constant on intervals of the form $\left[\frac{k-1}{2^{n}} \frac{k}{2^{n}}\right)$ and the values are determined by the average of $f(x)$. That is,

$$
\tilde{f}(x)=\frac{f\left(\frac{2 k-2}{2^{n+1}}\right)+f\left(\frac{2 k-1}{2^{n+1}}\right)}{2}, \quad x \in\left[\frac{k-1}{2^{n}} \frac{k}{2^{n}}\right) .
$$

By the induction hypothesis $\tilde{f}(x)$ can be represented as a linear combination of h_{0} and h_{k}^{j}, $j \in\{0,1,2, \cdots, n-1\}$. Then, for each interval of the form $\left[\frac{2 l-2}{2^{n+1}}, \frac{2 l}{2^{n+1}}\right)$, let

$$
\begin{aligned}
& g_{l-1}^{n}(x) \\
= & \left.\left(f\left(\frac{2 l-2}{2^{n+1}}\right)\right)-\tilde{f}\left(\frac{l-1}{2^{n}}\right)\right) \frac{h_{l-1}^{n}(x)}{2^{n / 2}} \\
= & \left.\frac{1}{2}\left(f\left(\frac{2 l-2}{2^{n+1}}\right)\right)-f\left(\frac{2 l-1}{2^{n}}\right)\right) \frac{h_{l-1}^{n}(x)}{2^{n / 2}} .
\end{aligned}
$$

Finally define

$$
\begin{aligned}
g(x) & =\tilde{f}(x)+\sum_{l=1}^{2^{n}} g_{l-1}^{n}(x) \\
& \left.=\tilde{f}(x)+\sum_{l=1}^{2^{n}} \frac{1}{2}\left(f\left(\frac{2 l-2}{2^{n+1}}\right)\right)-f\left(\frac{2 l-1}{2^{n}}\right)\right) \frac{h_{l-1}^{n}(x)}{2^{n / 2}} .
\end{aligned}
$$

Then it is easy to observe that

$$
\begin{aligned}
& g\left(\frac{2 l-2}{2^{n+1}}\right) \\
= & \left.\tilde{f}\left(\frac{l-1}{2^{n}}\right)+\frac{1}{2}\left(f\left(\frac{2 l-2}{2^{n+1}}\right)\right)-f\left(\frac{2 l-1}{2^{n}}\right)\right) \\
= & \frac{1}{2}\left(f\left(\frac{2 l-2}{2^{n+1}}\right)+f\left(\frac{2 l-1}{2^{n+1}}\right)+\frac{1}{2}\left(f\left(\frac{2 l-2}{2^{n+1}}\right)\right)-f\left(\frac{2 l-1}{2^{n}}\right)\right) \\
= & f\left(\frac{2 l-2}{2^{n+1}}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& g\left(\frac{2 l-1}{2^{n+1}}\right) \\
= & \left.\tilde{f}\left(\frac{l-1}{2^{n}}\right)+\frac{1}{2}\left(f\left(\frac{2 l-2}{2^{n+1}}\right)\right)-f\left(\frac{2 l-1}{2^{n}}\right)\right) \times(-1) \\
= & \frac{1}{2}\left(f\left(\frac{2 l-2}{2^{n+1}}\right)+f\left(\frac{2 l-1}{2^{n+1}}\right)-\frac{1}{2}\left(f\left(\frac{2 l-2}{2^{n+1}}\right)\right)-f\left(\frac{2 l-1}{2^{n}}\right)\right) \\
= & f\left(\frac{2 l-1}{2^{n+1}}\right) .
\end{aligned}
$$

Hence $g(x)=f(x)$ for all $x \in[0,1]$.

Let (E, \mathcal{E}) be a measurable space, and let μ be a σ-finite measure on (E, \mathcal{E}). A Gaussian white noise with intensity μ is an isometry G from $L^{2}(E, \mathcal{E}, \mu)$ into a centered Gaussian space.
(2)

Suppose that $\mathcal{N}_{0}, \mathcal{N}_{k}^{n}, n \in\{0,1,2, \cdots\}$ and $k \in\left\{0,1,2, \cdots, 2^{n}-1\right\}$, are independent, standard random variables on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Show that there exists a Gaussian white noise such that

$$
G\left(h_{0}\right)=\mathcal{N}_{n}, \quad \text { and } G\left(h_{k}^{n}\right)=\mathcal{N}_{k}^{n} .
$$

Proof. For each $f \in L^{2}([0,1], d x)$ can be written uniquely as

$$
f(x)=c_{0} h_{0}+\sum_{n=0}^{\infty} \sum_{k=0}^{2^{n}-1} c_{k}^{n} h_{k}^{n}
$$

with

$$
\|f\|_{2}^{2}=c_{0}^{2}+\sum_{n=0}^{\infty} \sum_{k=0}^{2^{n}-1}\left(c_{k}^{n}\right)^{2}<\infty
$$

Let $G\left(f_{m}\right)=c_{0} \mathcal{N}_{0}+\sum_{n=0}^{m} \sum_{k=0}^{2^{n}-1} c_{k}^{n} \mathcal{N}_{k}^{n}$. Note that by independence of \mathcal{N} and \mathcal{N}_{k}^{n}

$$
\mathbb{E}\left[\left(G\left(f_{m}\right)-G\left(f_{l}\right)\right)^{2}\right]=\mathbb{E}\left[\sum_{n=m+1}^{l} \sum_{k=0}^{2^{n}-1}\left(c_{k}^{n}\right)^{2}\left(\mathcal{N}_{k}^{n}\right)^{2}\right]=\sum_{n=m+1}^{l} \sum_{k=0}^{2^{n}-1}\left(c_{k}^{n}\right)^{2} \rightarrow 0
$$

as $m, l \rightarrow \infty$. Hence $G\left(f_{m}\right)$ is Cauchy in $L^{2}(\Omega, \mathcal{F}, \mathbb{P})$. We denote its limit by

$$
G(f)=\lim _{m} G\left(f_{m}\right)=c_{0} \mathcal{N}_{0}+\sum_{n=0}^{\infty} \sum_{k=0}^{2^{n}-1} c_{k}^{n} \mathcal{N}_{k}^{n} .
$$

Clearly this G has the desired property.

For each $t \in[0,1]$ set $B_{t}:=G\left(1_{[0, t]}\right)$. Show that

$$
B_{t}=t \mathcal{N}_{0}+\sum_{n=0}^{\infty}\left(\sum_{k=0}^{2^{n}-1} g_{k}^{n}(t) \mathcal{N}_{k}^{n}\right)
$$

where

$$
g_{k}^{n}(t)=\int_{0}^{t} h_{k}^{n}(s) d s
$$

$g_{k}^{n}(t)$ are called Schauder functions.
(3)

Proof. Write

$$
1_{[0, t]}=c_{0} h_{0}+\sum_{n=0}^{\infty} \sum_{k=0}^{2^{n}-1} c_{k}^{n} h_{k}^{n} .
$$

Then

$$
c_{0}=\left\langle 1_{[0, t]}, h_{0}\right\rangle=\int_{0}^{1} 1_{[0, t]}(s) d s=t
$$

and

$$
c_{k}^{n}=\left\langle 1_{[0, t]}, h_{k}^{n}\right\rangle=\int_{0}^{t} h_{k}^{n}(s) d s
$$

(4) In this step, we show that B_{t}^{m} converges uniformly to B_{t}. A key ingredient is the following Borel-Cantelli lemma.

Lemma 3.0.1 (Borel-Cantelli lemma). Let A_{n} be events on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)<\infty$. Then, $\mathbb{P}\left(\limsup _{n} A_{n}\right)=0$.

Proof. From $\limsup _{n} A_{n}=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}$, we have $\limsup _{n} A_{n} \subset \bigcup_{m=n}^{\infty} A_{m}$ for any $n \in \mathbb{N}$. Now the conclusion follows immediately from

$$
\mathbb{P}\left(\limsup _{n} A_{n}\right) \leq \mathbb{P}\left(\bigcup_{m=n}^{\infty} A_{m}\right) \leq \sum_{m=n}^{\infty} \mathbb{P}\left(A_{m}\right) \rightarrow 0
$$

For each $m \geq 0$ and $t \in[0,1]$ define

$$
B_{t}^{m}=t \mathcal{N}_{0}+\sum_{n=0}^{m}\left(\sum_{k=0}^{2^{n}-1} g_{k}^{n}(t) \mathcal{N}_{k}^{n}\right)
$$

Show that B_{t}^{m} converges uniformly to B_{t} on $[0,1]$ almost surely.

Proof. The key idea is to choose a clever choice of c_{n} with $c_{n} \rightarrow 0$ so that

$$
\sum_{n} \mathbb{P}\left(\sum_{k=0}^{2^{n}-1} g_{k}^{n}(t) \mathcal{N}_{k}^{n}>c_{n}\right)<\infty
$$

and use Borel-Cantelli lemma.
First note that for the standard normal random variable \mathcal{N} and $c \geq 1$ we have

$$
\mathbb{P}(|\mathcal{N}| \geq c)=2 \int_{c}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x \leq \sqrt{\frac{2}{\pi}} \int_{c}^{\infty} x e^{-\frac{x^{2}}{2}} d x=\sqrt{\frac{2}{\pi}} e^{-\frac{c^{2}}{2}}
$$

Note that supports of functions $g_{k}^{n}(t)$ are all disjoint and $\left|g_{k}^{n}(t)\right| \leq \frac{2^{n / 2}}{2^{n}}=2^{-\frac{n}{2}}$. Hence we have

$$
\begin{aligned}
& \mathbb{P}\left(\sum_{k=0}^{2^{n}-1} g_{k}^{n}(t) \mathcal{N}_{k}^{n}>c_{n}\right) \leq \mathbb{P}\left(2^{-\frac{n}{2}} \sup _{0 \leq k \leq 2^{n}-1} \mathcal{N}_{k}^{n}>c_{n}\right) \\
= & \mathbb{P}\left(\sup _{0 \leq k \leq 2^{n}-1} \mathcal{N}_{k}^{n}>2^{\frac{n}{2}} c_{n}\right) \leq \sqrt{\frac{2}{\pi}} \exp \left(-\frac{c_{n}^{2} 2^{n}}{2}\right) .
\end{aligned}
$$

Now let $c_{n}=2^{-\frac{n}{4}}$ so that $c_{n} \rightarrow 0$ and $\sum_{n} \exp \left(-\frac{c_{n}^{2} 2^{n}}{2}\right)=\sum_{n} \exp \left(-\frac{2^{n / 2}}{2}\right)<\infty$.
Now it follows from Borel-Cantelli lemma we have

$$
\mathbb{P}\left(\lim \sup \left\{\sum_{k=0}^{2^{n}-1} g_{k}^{n}(t) \mathcal{N}_{k}^{n}>2^{-\frac{n}{4}}\right\}\right)=0
$$

Hence for almost every $\omega \in \Omega$ there exists $N=N(\omega)$ such that

$$
\sum_{k=0}^{2^{n}-1} g_{k}^{n}(t) \mathcal{N}_{k}^{n} \leq 2^{-\frac{n}{4}}
$$

for all $n \geq N(\omega)$. This shows that B_{t}^{m} converges uniformly for all $t \in[0,1]$.

Hence we can, for every $t \in[0,1]$, select a random variable B_{t}^{\prime} which is a.s. equal to B_{t}, in such a way that the mapping $t \mapsto B_{t}^{\prime}(\omega)$ is continuous for every $\omega \in \Omega$.
(5)

Proof. Since the uniform limit of continuous functions is continuous, B_{t} is continuous on Ω^{\prime} with $\mathbb{P}\left(\Omega^{\prime}\right)=1$. Define

$$
B_{t}^{\prime}(\omega)= \begin{cases}B_{t}(\omega) & \text { if } \omega \in \Omega^{\prime} \\ 0 & \text { if } \omega \notin \Omega^{\prime}\end{cases}
$$

Chapter 4

Probabilistic Solution to Dirichlet Problem

Let D be a domain in \mathbb{R}^{d}. We say a point $z \in \partial D$ is a regular boundary point if $\mathbb{P}_{z}\left(\tau_{D}=0\right)=$ 1. Let $(\partial D)_{r}$ be a collection of all regular boundary points. A domain D is called regular if $(\partial D)_{r}=\partial D$.

Theorem 4.0.1. For any domain (bounded or unbounded) D and any $f \in$ $L^{\infty}(\partial D)$, the function $H_{D} f$ defined in \mathbb{R}^{d} by

$$
H_{D} f(x)=\mathbb{E}_{x}\left[\tau_{D}<\infty, f\left(W_{\tau_{D}}\right)\right]
$$

is harmonic in D. If, in addition, $z \in(\partial D)_{r}$ and f is continuous at z, then

$$
\lim _{x \rightarrow z, x \in D} H_{D} f(x)=f(z)
$$

Before proving the theorem we need to recall some facts. If follows from [1, Theorem 1.17] we have

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{d}} \mathbb{E}_{x}\left[\tau_{D}\right] \leq A_{d}|D|^{2 / d}, \quad A_{d}=\frac{d+2}{2 \pi d}\left(\frac{d+2}{2}\right)^{2 / d} \tag{4.1}
\end{equation*}
$$

In particular, if $|D|<\infty$, then $\mathbb{E}_{x}\left[\tau_{D}\right]<\infty$ a.s.
Lemma 4.0.2. Let $D \subset \mathbb{R}^{d}$ and B is an open ball with $\bar{B} \subset D$. Then, we have

1. $\tau_{B}+\tau_{D} \cdot \theta_{\tau_{B}}=\tau_{D}$.
2. $W_{\tau_{D}} \cdot \theta_{\tau_{B}}=W_{\tau_{D}}$.
3. Let $\Phi=1_{\left\{\tau_{D}<\infty\right\}} f\left(W_{\tau_{D}}\right)$. Then, $\Phi=\Phi \cdot \theta_{\tau_{B}}$.

Proof. First, it follows from (4.1) $\tau_{B}<\infty$ a.s. Note that for all such $\omega \in \Omega$ with $\tau_{B}(\omega)<\infty$
we have

$$
\begin{aligned}
& \tau_{D} \cdot \theta_{\tau_{B}}(\omega) \\
= & \inf \left\{t>0: X_{t}\left(\theta_{\tau_{B}}(\omega)\right) \notin D\right\} \\
= & \inf \left\{t>0: \theta_{\tau_{B}}(\omega)(t) \notin D\right\} \\
= & \inf \left\{t>0: \omega\left(\tau_{B}(\omega)+t\right) \notin D\right\} \\
= & \tau_{D}(\omega)-\tau_{B}(\omega) .
\end{aligned}
$$

Second, note that for any stopping time we define $X_{\tau}(\omega):=X(\tau(\omega), \omega)$. Hence, we have

$$
\begin{aligned}
& W_{\tau_{D}} \cdot \theta_{\tau_{B}}(\omega) \\
= & X\left(\tau_{D}\left(\theta_{\tau_{B}}(\omega)\right), \theta_{\tau_{B}}(\omega)\right) \\
= & X\left(\tau_{B}(\omega)+\tau_{D}\left(\theta_{\tau_{B}}(\omega)\right), \omega\right) \\
= & X\left(\tau_{D}(\omega), \omega\right) \\
= & W_{\tau_{D}}(\omega),
\end{aligned}
$$

where we used $\tau_{B}+\tau_{D} \cdot \theta_{\tau_{B}}=\tau_{D}$ in the middle.
Third, note that

$$
\Phi \cdot \theta_{\tau_{B}}(\omega)=1_{\left\{\tau_{D}<\infty\right\}}\left(\theta_{\tau_{B}}(\omega)\right) f\left(W_{\tau_{D}}\left(\theta_{\tau_{B}}(\omega)\right) .\right.
$$

From the second, we have $W_{\tau_{D}}\left(\theta_{\tau_{B}}(\omega)\right)=W_{\tau_{D}}(\omega)$. Note that $1_{\left\{\tau_{D}<\infty\right\}}(\omega)=1$ if and only if $\tau_{D}(\omega)<\infty$. Observe that $1_{\left\{\tau_{D}<\infty\right\}}\left(\theta_{\tau_{B}}(\omega)\right)=1$ if and only if

$$
\tau_{D}\left(\theta_{\tau_{B}}(\omega)\right)=\tau_{D}(\omega)-\tau_{B}(\omega)<\infty
$$

Since $\tau_{B}<\infty$ a.s., we conclude that $1_{\left\{\tau_{D}<\infty\right\}}\left(\theta_{\tau_{B}}(\omega)\right)=1$ if and only if $\tau_{D}(\omega)<\infty$ a.s.
Proof of Theorem 4.0.1 We first prove that $H_{D} f(x)$ is harmonic in D by showing that it has a sphere averaging property. Let $x \in D$ and $B=B(x, r)$ with $\bar{B} \subset D$. By Lemma 4.0.2 and the strong Markov property at τ_{B} we have

$$
\begin{aligned}
& H_{D} f(x)=\mathbb{E}_{x}[\Phi]=\mathbb{E}_{x}\left[\Phi \cdot \theta_{\tau_{B}}\right] \\
= & \mathbb{E}_{x}\left[\mathbb{E}_{X_{\tau_{B}}}[\Phi]\right] \\
= & \int_{S(x, r)} \mathbb{E}_{u}[\Phi] \mathbb{P}_{x}\left(X_{\tau_{B(x, r)}} \in d u\right) \\
= & \frac{1}{\sigma(S(x, r))} \int_{S(x, r)} \mathbb{E}_{u}[\Phi] \sigma(d u) \\
= & \frac{1}{\sigma(S(x, r))} \int_{S(x, r)} H_{D} f(u) \sigma(d u),
\end{aligned}
$$

where we used the fact that the distribution of $\mathbb{P}_{x}\left(X_{\tau_{B(x, r)}} \in d u\right)$ is a uniform measure on $S(x, r)$. Now fix $z \in(\partial D)_{r}=\left\{w \in \mathbb{R}^{d}: \mathbb{P}_{w}\left(\tau_{D}=0\right)=1\right\}$. Given $\epsilon>0$ take $\delta_{1}=\delta_{1}(\epsilon)$ such that $|f(x)-f(z)|<\epsilon$ for all $|x-z|<\delta_{1}$. Note that

$$
\begin{aligned}
& \mathbb{E}_{x}\left[\tau_{D}<\infty,\left|f\left(W_{\tau_{D}}\right)-f(z)\right|\right] \\
= & \mathbb{E}_{x}\left[\tau_{D}<\infty,\left|f\left(W_{\tau_{D}}\right)-f(z)\right|, \tau_{B(z, \delta)}>\tau_{D}\right]+\mathbb{E}_{x}\left[\tau_{D}<\infty,\left|f\left(W_{\tau_{D}}\right)-f(z)\right|, \tau_{B(z, \delta)} \leq \tau_{D}\right] \\
\leq & \epsilon+\mathbb{E}_{x}\left[\tau_{D}<\infty,\left|f\left(W_{\tau_{D}}\right)-f(z)\right|, \tau_{B(z, \delta)} \leq \tau_{D}\right],
\end{aligned}
$$

where we used the fact on $\left\{\tau_{B(z, \delta)}>\tau_{D}\right\} W_{\tau_{D}} \in B(z, r)$ and $\left|f\left(W_{\tau_{D}}\right)-f(z)\right|<\epsilon$. The second expression above can be bounded above by

$$
\mathbb{E}_{x}\left[\tau_{D}<\infty,\left|f\left(W_{\tau_{D}}\right)-f(z)\right|, \tau_{B(z, \delta)} \leq \tau_{D}\right] \leq 2\|f\|_{\infty} \mathbb{P}_{x}\left(\tau_{B(z, \delta)} \leq \tau_{D}\right)
$$

The intuitive idea is that when x is near $z \in(\partial D)_{r}, \tau_{D}$ must be small and this makes the probability small. For $x \in B(z, \delta)$ we have $B(x, \delta / 2) \subset B(z, \delta)$ and $\tau_{B(x, \delta / 2)} \leq \tau_{B(z, \delta)}$. Hence, we have

$$
\mathbb{P}_{x}\left(\tau_{B(z, \delta)} \leq \tau_{D}\right) \leq \mathbb{P}_{x}\left(\tau_{B(x, \delta / 2)} \leq \tau_{D}\right)
$$

By the path continuity we have $\mathbb{P}_{x}\left(\tau_{B(x, \delta / 2)}>0\right)=1$ or $\mathbb{P}_{x}\left(\tau_{B(x, \delta / 2)}=0\right)=0$. Since $\lim _{n \rightarrow \infty} \mathbb{P}_{x}\left(\tau_{B(x, \delta / 2)} \leq 1 / n\right)=\mathbb{P}_{x}\left(\tau_{B(x, \delta / 2)}=0\right)=0$, we can take $s>0$ such that

$$
\begin{equation*}
\mathbb{P}_{x}\left(\tau_{B(x, \delta / 2)} \leq s\right)<\epsilon \tag{4.2}
\end{equation*}
$$

Fix this $s>0$. Note that

$$
\begin{aligned}
& \mathbb{P}_{x}\left(\tau_{B(z, \delta)} \leq \tau_{D}\right) \\
\leq & \mathbb{P}_{x}\left(\tau_{B(x, \delta / 2)} \leq s \text { or } \tau_{D}>s\right) \\
\leq & \mathbb{P}_{x}\left(\tau_{B(x, \delta / 2)} \leq s\right)+\mathbb{P}_{x}\left(\tau_{D}>s\right)
\end{aligned}
$$

Since $z \in(\partial D)_{r}$ we have $\mathbb{P}_{z}\left(\tau_{D}>s\right)=0$. The map $x \rightarrow \mathbb{P}_{x}\left(\tau_{D}>s\right)$ is upper-semi-continuous and we have

$$
\limsup _{x \rightarrow z} \mathbb{P}_{x}\left(\tau_{D}>s\right) \leq \mathbb{P}_{z}\left(\tau_{D}>s\right)=0
$$

Hence, $\lim _{x \rightarrow z} \mathbb{P}_{x}\left(\tau_{D}>s\right)=0$ or

$$
\begin{equation*}
\lim _{x \rightarrow z} \mathbb{P}_{x}\left(\tau_{D} \leq s\right)=1 \tag{4.3}
\end{equation*}
$$

Take $\delta_{2}=\delta_{2}(\epsilon)$ such that

$$
\begin{equation*}
\mathbb{P}_{x}\left(\tau_{D}>s\right)<\epsilon \tag{4.4}
\end{equation*}
$$

for all $x \in \bar{D}$ with $|x-z|<\delta_{2}$.
Now let $\delta=\min \left(\delta_{1}, \delta_{2}\right)$. For any $x \in \bar{D}$ with $|x-z|<\delta$ we have from (4.2) and (4.4)

$$
\begin{aligned}
& \mathbb{E}_{x}\left[\tau_{D}<\infty,\left|f\left(W_{\tau_{D}}\right)-f(z)\right|\right] \\
\leq & \epsilon+\mathbb{E}_{x}\left[\tau_{D}<\infty,\left|f\left(W_{\tau_{D}}\right)-f(z)\right|, \tau_{B(z, \delta)} \leq \tau_{D}\right] \\
\leq & \epsilon+2\|f\|_{\infty} \mathbb{P}_{x}\left(\tau_{B(z, r)} \leq \tau_{D}\right) \\
\leq & \epsilon+2\|f\|_{\infty}\left(\mathbb{P}_{x}\left(\tau_{B(x, \delta / 2)} \leq s\right)+\mathbb{P}_{x}\left(\tau_{D}>s\right)\right) \\
\leq & \epsilon+4 \epsilon\|f\|_{\infty}
\end{aligned}
$$

Hence, we have

$$
\lim _{x \rightarrow z, x \in \bar{D}} H_{D} f(x)=\lim _{x \rightarrow z, x \in \bar{D}} \mathbb{P}_{x}\left(\tau_{D}<\infty\right) \cdot f(z)
$$

Finally, it follows from (4.3) we have $\lim _{x \rightarrow z, x \in \bar{D}} \mathbb{P}_{x}\left(\tau_{D}<\infty\right)=1$.
It is well-known that for Lipschitz domain D, all boundary points are regular for Brownian motions. Hence, we have the following theorem.

Theorem 4.0.3. Let $D \subset \mathbb{R}^{d}$ be a bounded Lipchitz domain and f is continuous on ∂D. Then, there exists a unique solution to the following Dirichlet problem

$$
\begin{cases}\Delta u(x)=0, & x \in D \\ u(z)=f(z), & z \in \partial D\end{cases}
$$

Furthermore, u is given by

$$
u(x)=\mathbb{E}_{x}\left[f\left(W_{\tau_{D}}\right)\right] .
$$

Part IV

Stochastic Integrals with respect to Brownian Motions

Chapter 5

Stochastic Integral with respect to Brownian Motions

In this chapter, we will define the stochastic integral (Itô integral) $\mathcal{I}(f)=\int_{0}^{T} f(t, \omega) d W_{t}$. Note that $\mathbb{E}\left[e^{i \theta W_{t}}\right]=e^{-t|\theta|^{2} / 2}$ and this shows that W_{t} and $t^{1 / 2} W_{1}$ has the same distribution. This means that locally W_{t} moves as fast as \sqrt{t} and W_{t} cannot be of bounded variation as $\sum \frac{1}{\sqrt{n}}=\infty$. Hence, the Lebesgue-Stieltjes integral does not work as the sample $t \rightarrow W_{t}$ is not of bounded variation. We will overcome this by defining the stochastic integral as an element in $L^{2}(\mathbb{P})$.
There are a few steps to achieve this:

1. Define $\mathcal{I}(f)$ when f is elementary.
2. Use the Itô's isometry $\mathbb{E}\left[\mathcal{I}(f)^{2}\right]=\mathbb{E}\left[\int_{0}^{T} f(t, \omega)^{2} d t\right]$ to extend $\mathcal{I}(f)$ for $f \in L^{2}((0, T) \otimes \mathbb{P})$

Definition 5.0.1. Fix $T>0$. We define $V=V(T)$ be a collection of functions f such that
(1) $(t, \omega) \rightarrow f(t, \omega)$ is $\mathcal{B} \otimes \mathcal{F}$-measurable.
(2) For each $t>0, f(t, \omega) \in \mathcal{F}_{t}\left(\mathcal{F}_{t}\right.$-adapted).
(3) $\mathbb{E}\left[\int_{0}^{T} f(t, \omega)^{2} d t\right]<\infty$.

Definition 5.0.2. A function ϕ is called elementary if it can be written as

$$
\phi(t, \omega)=\sum_{j} e_{j}(\omega) 1_{\left[t_{j}, t_{j+1}\right)}(t), \quad e_{j} \in \mathcal{F}_{t_{j}}
$$

For an elementary function ϕ we define $\mathcal{I}(\phi)$ as

$$
\mathcal{I}(\phi)=\sum_{j} e_{j}\left(W_{t_{j+1} \wedge T}-W_{t_{j} \wedge T}\right):=\sum_{j} e_{j} \Delta W_{t_{j}} .
$$

In order to proceed, we need to briefly introduce a conditional expectation and martingales.

Definition 5.0.3 (Conditional Expectations). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $X: \Omega \rightarrow \mathbb{R}^{d}$ be a random variable such that $\mathbb{E}[|X|]<\infty$. If $\mathcal{H} \subset \mathcal{F}$ is a σ-algebra, then the conditional expectation of X given \mathcal{H}, denoted by $\mathbb{E}[X \mid \mathcal{H}]$, is a random variable such that

1. $\mathbb{E}[X \mid \mathcal{H}]$ is \mathcal{H}-measurable.
2. $\mathbb{E}[X, A]=\mathbb{E}[\mathbb{E}[X \mid \mathcal{H}], A]$ for any $A \in \mathcal{H}$.

Conditional expectation exists and it is unique a.e. (any two are equal a.e.). Intuitively, the conditional expectation $\mathbb{E}[X \mid \mathcal{H}]$ is the best guess of X given information \mathcal{H}.

Properties of Conditional Expectations

1. $X \rightarrow \mathbb{E}[X \mid \mathcal{H}]$ is linear.
2. Let $\mathcal{H}_{1} \subset \mathcal{H}_{2}$. Then, $\mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{H}_{2}\right] \mid \mathcal{H}_{1}\right]=\mathbb{E}\left[X \mid \mathcal{H}_{1}\right]$ (Towering property).
3. If $X \in \mathcal{H}$, then $\mathbb{E}[X Y \mid \mathcal{H}]=X \mathbb{E}[Y \mid \mathcal{H}]$.
4. Convergence Theorems for Conditional Expectations
(a) Monotone Convergence Theorem

If $0 \leq X_{n} \leq X$ and $X_{n} \uparrow X$, then $\mathbb{E}\left[X_{n} \mid \mathcal{H}\right] \uparrow \mathbb{E}[X \mid \mathcal{H}]$.
(b) Fatou Theorem

Let $0 \leq X_{n}$. Then, $\mathbb{E}\left[\liminf _{n \rightarrow \infty} X_{n} \mid \mathcal{H}\right] \leq \liminf _{n \rightarrow \infty} \mathbb{E}\left[X_{n} \mid \mathcal{H}\right]$.
(c) Dominated Convergence Theorem

Suppose that $X_{n} \rightarrow X$ and $\left|X_{n}\right| \leq Z$ with $\mathbb{E}[Z]<\infty$. Then, $\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n} \mid \mathcal{H}\right]=$ $\mathbb{E}[X \mid \mathcal{H}]$.
5. Jensen's Inequality for Conditional Expectation

Let ϕ be convex and $\mathbb{E}[|X|], \mathbb{E}[|\phi(X)|]<\infty$. Then, $\phi(\mathbb{E}[X \mid \mathcal{H}]) \leq \mathbb{E}[\phi(X) \mid \mathcal{H}]$.

Definition 5.0.4 (Martingales). Let $\left\{\mathcal{F}_{t}\right\}$ be a filtration (collection of increasing σ-algebras). A stochastic process $X=\left\{X_{t}\right\}$ is called a martingale if

1. $\mathbb{E}\left[\left|X_{t}\right|\right]<\infty$ for each $t>0$;
2. X_{t} is \mathcal{F}_{t} adapted (X_{t} is \mathcal{F}_{t} measurable);
3. for any $s<t \mathbb{E}\left[X_{t} \mid \mathcal{F}_{s}\right]=X_{s}$.

Proposition 5.0.5 (Itô Isometry). Suppose that ϕ is bounded and elementary. Then, we have

$$
\mathbb{E}\left[\mathcal{I}(\phi)^{2}\right]=\mathbb{E}\left[\int_{0}^{T} \phi(t, \omega)^{2} d t\right]
$$

Proof. Note that

$$
\phi(t, \omega)^{2}=\sum_{j} e_{j}(\omega)^{2} 1_{\left[t_{j}, t_{j+1}\right)}(t) \text { and } \mathbb{E}\left[\int_{0}^{T} \phi(t, \omega)^{2} d t\right]=\sum_{j} \mathbb{E}\left[e_{j}^{2}\right]\left(t_{j+1} \wedge T-t_{j} \wedge T\right)
$$

Also, we have

$$
\mathcal{I}(\phi)^{2}=\left(\sum_{j} e_{j} \Delta W_{t_{j}}\right)^{2}=\sum_{j} e_{j}^{2} \Delta W_{t_{j}}^{2}+\sum_{j \neq k} e_{j} e_{k} \Delta W_{t_{j}} \Delta W_{t_{k}}
$$

Hence, the proof will be completed if one can show that

$$
\mathbb{E}\left[e_{j} e_{k} \Delta W_{t_{j}} \Delta W_{t_{k}}\right]=0, \quad j \neq k
$$

and

$$
\mathbb{E}\left[e_{j}^{2} \Delta W_{t_{j}}^{2}\right]=\mathbb{E}\left[e_{j}^{2}\right]\left(t_{j+1} \wedge T-t_{j} \wedge T\right)
$$

Using the conditional expectation argument we have for $j<k$

$$
\begin{aligned}
& \mathbb{E}\left[e_{j} e_{k} \Delta W_{t_{j}} \Delta W_{t_{k}}\right] \\
= & \mathbb{E}\left[\mathbb{E}\left[e_{j} e_{k} \Delta W_{t_{j}} \Delta W_{t_{k}} \mid \mathcal{F}_{t_{j}}\right]\right] \\
= & \mathbb{E}\left[e_{j} e_{k} \Delta W_{t_{j}} \mathbb{E}\left[\Delta W_{t_{k}} \mid \mathcal{F}_{t_{j}}\right]\right] \\
= & 0
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
& \mathbb{E}\left[e_{j}^{2} \Delta W_{t_{j}}^{2}\right] \\
= & \mathbb{E}\left[\mathbb{E}\left[e_{j}^{2} \Delta W_{t_{j}}^{2} \mid \mathcal{F}_{t_{j}}\right]\right] \\
= & \mathbb{E}\left[e_{j}^{2} \mathbb{E}\left[\left(W_{t_{j+1} \wedge T}-W_{t_{j} \wedge T}\right)^{2} \mid \mathcal{F}_{t_{j}}\right]\right] \\
= & \mathbb{E}\left[e_{j}^{2}\right]\left(t_{j+1} \wedge T-t_{j} \wedge T\right) .
\end{aligned}
$$

Now, we are ready to define the ltô integral $\mathcal{I}(f)$ for $f \in V(T)$.
Theorem 5.0.6. For $f \in V(T)$, one can define

$$
I(f)=\int_{0}^{T} f(t, \omega) d W_{t}
$$

as L^{2}-limit of $\mathcal{I}\left(\phi_{n}\right)$, where $\mathbb{E}\left[\int_{0}^{T}\left(f(t, \omega)-\phi_{n}(t, \omega)\right)^{2} d t\right] \rightarrow 0$. The Itô integral $\mathcal{I}(f)$ satisfies
(1) $\int_{0}^{T} f(t, \omega) d W_{t} \in \mathcal{F}_{T}$.
(2) $\mathbb{E}\left[\int_{0}^{T} f(t, \omega) d W_{t}\right]=0$.
(3) $\mathbb{E}\left[\left(\int_{0}^{T} f(t, \omega) d W_{t}\right)^{2}\right]=\mathbb{E}\left[\int_{0}^{T} f(t, \omega)^{2} d t\right]$.
(4) $\int_{0}^{S} f(t, \omega) d W_{t}+\int_{S}^{T} f(t, \omega) d W_{t}=\int_{0}^{T} f(t, \omega) d W_{t}$.
(5) $\int_{0}^{T} a f(t, \omega)+b g(t, \omega) d W_{t}=a \int_{0}^{T} f(t, \omega) d W_{t}+b \int_{0}^{T} g(t, \omega) d W_{t}$.

Proof. One of standard ingredients we need is that the elementary functions are dense in $V=V(T)$, which is a standard technique in measure theory. Once, this is established, for $f \in V$ we take a sequence of elementary functions $\left\{\phi_{n}\right\}$ converging to f. Note that

$$
\mathbb{E}\left[\left(\int_{0}^{T} \phi_{n}(t, \omega) d W_{t}-\int_{0}^{T} \phi_{m}(t, \omega) d W_{t}\right)^{2}\right]=\mathbb{E}\left[\int_{0}^{T}\left(\phi_{n}(t, \omega)-\phi_{m}(t, \omega)\right)^{2} d t\right],
$$

which shows that $\mathcal{I}\left(\phi_{n}\right)$ is Cauchy in $L^{2}(\mathbb{P})$, hence it converges in $L^{2}(\mathbb{P})$. Hence, we can define $\mathcal{I}(f)$ as the $L^{2}(\mathbb{P})$ limit. It is easy to observe that the limit is independent of the approximating sequence ϕ_{n}.
The rest are easy as they holds for elementary functions and the same must hold in the limit.
Furthermore, one can choose the Itô integral so that $t \rightarrow \mathcal{I}(f)(t, \omega)$ is continuous a.s. More precisely, we have

Theorem 5.0.7. For any $T>0$, the map

$$
t \rightarrow \int_{0}^{t} f(s, \omega) d W_{s}
$$

is continuous almost surely for $t \in[0, T]$.

Proof. Two main ingredient for the proof is the Doob's maximal inequality for martingales

$$
\mathbb{P}\left(\sup _{t \leq T}\left|M_{t}\right| \geq \lambda\right) \leq \frac{1}{\lambda^{p}} \mathbb{E}\left[\left|M_{T}\right|^{p}\right], \quad p \in[1, \infty)
$$

and Borel-Cantelli Lemma.
Let $f \in V$ and choose an approximating sequence $\left\{\phi_{n}\right\}$ of elementary functions converging to f in $L^{2}([0, T] \otimes \mathbb{P})$. Let

$$
\mathcal{I}_{n}(t, \omega)=\int_{0}^{t} \phi_{n}(s, \omega) d W_{s} .
$$

Then, it is easy to observe that $t \rightarrow \mathcal{I}_{n}(t, \omega)$ is a martingale with respect to \mathcal{F}_{t} : for $s \leq t$

$$
\mathbb{E}\left[\mathcal{I}_{n}(t, \omega) \mid \mathcal{F}_{s}\right]=\mathcal{I}_{n}(s, \omega) \quad \text { a.s. }
$$

By the Doob's maximal inequality, we have

$$
\mathbb{P}\left(\sup _{t \leq T}\left|\mathcal{I}_{n}(t, \omega)-\mathcal{I}_{m}(t, \omega)\right|>\epsilon\right) \leq \frac{1}{\epsilon^{2}} \mathbb{E}\left[\left|\mathcal{I}_{n}(T, \omega)-\mathcal{I}_{m}(T, \omega)\right|^{2}\right] .
$$

The right-hand side converges to zero as $n, m \rightarrow \infty$ and one can choose a subsequence $\left\{n_{k}\right\}$ such that

$$
\mathbb{P}\left(\sup _{t \leq T}\left|\mathcal{I}_{n_{k+1}}(t, \omega)-\mathcal{I}_{n_{k}}(t, \omega)\right|>2^{-k}\right) \leq 2^{-k}
$$

Hence, by Borel-Cantelli Lemma we have

$$
\mathbb{P}\left(\lim \sup _{k}\left\{\sup _{t \leq T}\left|\mathcal{I}_{n_{k+1}}(t, \omega)-\mathcal{I}_{n_{k}}(t, \omega)\right|>2^{-k}\right\}\right)=0
$$

and there exists $\Omega^{\prime} \subset \Omega$ with $\mathbb{P}\left(\Omega^{\prime}\right)=1$ such that for each $\omega \in \Omega^{\prime}$ there exists $k_{1}=k_{1}(\omega)$ such that for all $k \geq k_{1}$ we have

$$
\sup _{t \leq T}\left|\mathcal{I}_{n_{k+1}}(t, \omega)-\mathcal{I}_{n_{k}}(t, \omega)\right| \leq 2^{-k} .
$$

Hence, $\mathcal{I}_{n_{k}}(t, \omega)$ converges uniformly for all $t \leq T$ and the limit is continuous. Since L^{2}-limit is unique a.s., this establishes the claim.

5.1 Exercises

(1) The purpose of this exercise is to justify the approximation argument in the proof of Theorem 5.0.6
(a) Let $g \in V$ be bounded and $g(\cdot, \omega)$ is continuous for each ω. Then there exist elementary functions ϕ_{n} such that

$$
\mathbb{E}\left[\int_{0}^{T}\left(g-\phi_{n}\right)^{2} d t\right] \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Solution. Let $\phi_{n}(t, \omega)=\sum_{j=1}^{n} g\left(t_{j}^{(n)}, \omega\right) \cdot 1_{\left[t_{j}^{(n)}, t_{j+1}^{(n)}\right)}$, where $t_{j}^{(n)}=\frac{T j}{n}$. Since $\cdot \rightarrow$ $g(\cdot, \omega)$ is continuous, $\phi_{n}(t, \omega) \rightarrow g(t, \omega)$ as $n \rightarrow \infty$ and the claim follows from the bounded convergence theorem.
(b) Let $h \in V$ be bounded. Then there exist bounded functions $g_{n} \in V$ such that $\cdot \rightarrow$ $g_{n}(\cdot, \omega)$ is continuous and

$$
\mathbb{E}\left[\int_{0}^{T}\left(h-g_{n}\right)^{2} d t\right] \rightarrow 0 \text { as } n \rightarrow \infty
$$

Solution. Let $g_{n}=\psi_{n} \star h$, where ψ_{n} is an approximation to the identity. Then, g_{n} is smooth in t and $\int_{0}^{T}\left(g_{n}(s, \omega)-h(s, \omega)\right)^{2} d s \rightarrow 0$. Now the claim follows from the bounded convergence theorem.
(c) Let $f \in V$. Then there exists a sequence $h_{n} \in V$ such that h_{n} is bounded and

$$
\mathbb{E}\left[\int_{0}^{T}\left(f-h_{n}\right)^{2} d t\right] \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Solution. Let $h_{n}=f \cdot 1_{\{|f| \leq n\}}$.

Chapter 6

Itô Theorem

In this section, we prove the celebrated Itô Formula.
Definition 6.0.1. We say $X=\{X\}_{t}$ is a Itô process if it can be written as

$$
X_{t}=X_{0}+\int_{0}^{t} u(s, \omega) d s+\int_{0}^{t} v(s, \omega) d W_{s}
$$

where $\mathbb{P}\left(\int_{0}^{t}|u(s, \omega)| d s<\infty\right.$ for all $\left.t \geq 0\right)=\mathbb{P}\left(\int_{0}^{t}|v(s, \omega)|^{2} d s<\infty\right.$ for all $\left.t \geq 0\right)=$
1.

We will write it as

$$
d X_{t}=u d t+v d W_{t} .
$$

Let $g=g(t, x) \in C^{2}([0, \infty) \times \mathbb{R})$ and $Y_{t}=g\left(t, X_{t}\right)$. Here is the statement for the main theorem.
Theorem 6.0.2. Let X be an Itô process given by $d X_{t}=u d t+v d W_{t}$ and $Y_{t}=$ $g\left(t, X_{t}\right)$ for $g \in C^{2}$. Then, we have

$$
d Y_{t}=\frac{\partial g}{\partial t}\left(t, X_{t}\right) d t+\frac{\partial g}{\partial x}\left(t, X_{t}\right) d X_{t}+\frac{1}{2} \frac{\partial^{2} g}{\partial x^{2}}\left(t, X_{t}\right) \cdot\left(d X_{t}\right)^{2}
$$

where $\left(d X_{t}\right)^{2}$ is computed according to the rules

$$
d t \cdot d t=d t \cdot d W_{t}=0, \quad d W_{t} \cdot d W_{t}=d t
$$

Before we proceed any further, we illustrate some examples that use the Itô Theorem.
Examples 6.0.3. (1) $\int_{0}^{t} W_{s} d W_{s}=\frac{1}{2} W_{t}^{2}-\frac{t}{2}$.
Let $X_{t}=W_{t}$ and $Y_{t}=f\left(X_{t}\right):=\frac{1}{2} W_{t}^{2}$. Then, by the Itô Theorem

$$
d Y_{t}=\frac{d f}{d x}\left(Y_{t}\right) d X_{t}+\frac{1}{2} \frac{d^{2} f}{d x^{2}}\left(Y_{t}\right)\left(d X_{t}\right)^{2}=W_{t} d W_{t}+\frac{1}{2} d t,
$$

or

$$
Y_{t}-Y_{0}=\int_{0}^{t} W_{s} d W_{s}+\int_{0}^{t} \frac{1}{2} d s=\int_{0}^{t} W_{s} d W_{s}+\frac{t}{2}
$$

Hence,

$$
\int_{0}^{t} W_{s} d W_{s}=\frac{1}{2} W_{t}^{2}-\frac{t}{2}
$$

(2) $\int_{0}^{t} s d W_{s}=t W_{t}-\int_{0}^{t} W_{s} d s$.

Let $X_{t}=W_{t}$ and $Y_{t}=f\left(t, X_{t}\right):=t W_{t}$. Then, by the Itô Theorem

$$
d Y_{t}=\frac{\partial f}{\partial t}\left(t, X_{t}\right) d t+\frac{\partial f}{\partial x}\left(t, X_{t}\right) d X_{t}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\left(d X_{t}\right)^{2}=W_{t} d t+t d W_{t}
$$

or

$$
t W_{t}-0 W_{0}=\int_{0}^{t} W_{s} d s+\int_{0}^{t} s d W_{s} \rightarrow \int_{0}^{t} s d W_{s}=t W_{t}-\int_{0}^{t} W_{s} d s
$$

We define a quadratic variation process of W by

$$
\langle W, W\rangle(t):=\lim _{\Delta t_{k} \rightarrow 0}\left|W_{t_{k+1}}-W_{t_{k}}\right|^{2}
$$

where the convergence is convergence in probability. Recall that $\Delta W_{t_{k}}=W_{t_{k+1}}-W_{t_{k}}$.
Lemma 6.0.4. Let $0 \leq t_{1}<t_{2}<\cdots t_{n} \leq t$ be a partition of time interval $[0, t]$.
Then we have

$$
\mathbb{E}\left[\left(\sum_{k}\left(\Delta W_{t_{k}}\right)^{2}-t\right)^{2}\right]=2 \sum_{k}\left(\Delta t_{k}\right)^{2}
$$

Hence,

$$
\langle W, W\rangle(t) \rightarrow t \text { in } L^{2}(\Omega)
$$

Proof. First note that

$$
\sum_{k}\left(\Delta W_{t_{k}}\right)^{2}-t=\sum_{k}\left(\left(\Delta W_{t_{k}}\right)^{2}-\Delta t_{k}\right)
$$

Hence,

$$
\begin{aligned}
& \left(\sum_{k}\left(\Delta W_{t_{k}}\right)^{2}-t\right)^{2}=\left(\sum_{k}\left(\left(\Delta W_{t_{k}}\right)^{2}-\Delta t_{k}\right)\right)^{2} \\
= & \sum_{k}\left(\left(\Delta W_{t_{k}}\right)^{2}-\Delta t_{k}\right)^{2}+2 \sum_{k<j}\left(\left(\Delta W_{t_{k}}\right)^{2}-\Delta t_{k}\right)\left(\left(\Delta W_{t_{j}}\right)^{2}-\Delta t_{j}\right) \\
= & \sum_{k}\left[\left(\Delta W_{t_{k}}\right)^{4}-2 \Delta t_{k}\left(\Delta W_{t_{k}}\right)^{2}+\left(\Delta t_{k}\right)^{2}\right]+2 \sum_{k<j}\left(\left(\Delta W_{t_{k}}\right)^{2}-\Delta t_{k}\right)\left(\left(\Delta W_{t_{j}}\right)^{2}-\Delta t_{j}\right) .
\end{aligned}
$$

Hence it follows from independence of increments and facts that $\mathbb{E}\left[W_{t}^{2}\right]=t$ and $\mathbb{E}\left[W_{t}^{4}\right]=3 t^{2}$

$$
\mathbb{E}\left[\left(\Delta W_{t_{k}}\right)^{4}-2 \Delta t_{k}\left(\Delta W_{t_{k}}\right)^{2}+\left(\Delta t_{k}\right)^{2}\right]=3\left(\Delta t_{k}\right)^{2}-2\left(\Delta t_{k}\right)^{2}+\left(\Delta t_{k}\right)^{2}=2\left(\Delta t_{k}\right)^{2}
$$

For $k<j$, it follows from a conditioning argument

$$
\begin{aligned}
& \mathbb{E}\left[\left(\left(\Delta W_{t_{k}}\right)^{2}-\Delta t_{k}\right)\left(\left(\Delta W_{t_{j}}\right)^{2}-\Delta t_{j}\right)\right] \\
= & \mathbb{E}\left[\mathbb{E}\left[\left(\left(\Delta W_{t_{k}}\right)^{2}-\Delta t_{k}\right)\left(\left(\Delta W_{t_{j}}\right)^{2}-\Delta t_{j}\right) \mid \mathcal{F}_{t_{j}}\right]\right] \\
= & \mathbb{E}\left[\left(\left(\Delta W_{t_{k}}\right)^{2}-\Delta t_{k}\right) \mathbb{E}\left[\left(\left(\Delta W_{t_{j}}\right)^{2}-\Delta t_{j}\right) \mid \mathcal{F}_{t_{j}}\right]\right] \\
= & 0 .
\end{aligned}
$$

This establishes the claim.
Proof of Theorem 6.0.2 By an approximation argument, we may assume all functions are bounded. The proof uses the Taylor theorem up to the second order term and a crucial ingredient of the theorem is the quadratic variation of Brownian motions. Note that

$$
\begin{aligned}
& Y_{t}-Y_{0}=\sum_{j} \Delta Y_{t_{j}}=\sum_{j} \Delta g\left(t_{j}, X_{t_{j}}\right) \\
= & \sum_{j} \frac{\partial g}{\partial t}\left(t_{j}, X_{t_{j}}\right) \Delta t_{j}+\sum_{j} \frac{\partial g}{\partial x}\left(t_{j}, X_{t_{j}}\right) \Delta X_{t_{j}} \\
& +\frac{1}{2} \sum_{j} \frac{\partial^{2} g}{\partial t^{2}}\left(t_{j}, X_{t_{j}}\right)\left(\Delta t_{j}\right)^{2}+\sum_{j} \frac{\partial^{2} g}{\partial t \partial x}\left(t_{j}, X_{t_{j}}\right) \Delta t_{j} \Delta X_{t_{j}}+\frac{1}{2} \sum_{j} \frac{\partial^{2} g}{\partial x^{2}}\left(t_{j}, X_{t_{j}}\right)\left(\Delta X_{t_{j}}\right)^{2}+\sum_{j} R_{j},
\end{aligned}
$$

where $R_{j}=o\left(\left|\Delta t_{j}\right|^{2}+\left|\Delta X_{j}\right|^{2}\right)$.
It is easy to observe that

$$
\sum_{j} \frac{\partial g}{\partial t}\left(t_{j}, X_{t_{j}}\right) \Delta t_{j} \rightarrow \int_{0}^{t} \frac{\partial g}{\partial t}\left(s, X_{s}\right) d s, \quad \sum_{j} \frac{\partial g}{\partial x}\left(t_{j}, X_{t_{j}}\right) \Delta X_{t_{j}} \rightarrow \int_{0}^{t} \frac{\partial g}{\partial x}\left(s, X_{s}\right) d X_{s}
$$

and

$$
\sum_{j} \frac{\partial^{2} g}{\partial t^{2}}\left(t_{j}, X_{t_{j}}\right)\left(\Delta t_{j}\right)^{2} \text { and } \sum_{j} \frac{\partial^{2} g}{\partial t \partial x}\left(t_{j}, X_{t_{j}}\right) \Delta t_{j} \Delta X_{t_{j}} \rightarrow 0
$$

Note that

$$
\begin{aligned}
& \sum_{j} \frac{\partial^{2} g}{\partial x^{2}}\left(\Delta X_{t_{j}}\right)^{2} \\
= & \sum_{j} \frac{\partial^{2} g}{\partial x^{2}} u\left(t_{j}, \omega\right)^{2}\left(\Delta t_{j}\right)^{2}+2 \sum_{j} \frac{\partial^{2} g}{\partial x^{2}} u\left(t_{j}, \omega\right) v\left(t_{j}, \omega\right) \Delta t_{j} \Delta W_{t_{j}}+\sum_{j} \frac{\partial^{2} g}{\partial x^{2}} v\left(t_{j}, \omega\right)^{2}\left(\Delta W_{t_{j}}\right)^{2}
\end{aligned}
$$

The first two expressions converges to 0 and by Lemma 6.0.4 we have

$$
\mathbb{E}\left[\left|\sum_{j} \frac{\partial^{2} g}{\partial x^{2}} v\left(t_{j}, \omega\right)^{2}\left(\Delta W_{t_{j}}\right)^{2}-\sum_{j} \frac{\partial^{2} g}{\partial x^{2}} v\left(t_{j}, \omega\right)^{2} \Delta t_{j}\right|^{2}\right] \rightarrow 0
$$

and this shows that

$$
\sum_{j} \frac{\partial^{2} g}{\partial x^{2}} v\left(t_{j}, \omega\right)^{2}\left(\Delta W_{t_{j}}\right)^{2} \rightarrow \int_{0}^{t} \frac{\partial^{2} g}{\partial x^{2}} v(s, \omega)^{2} d s \text { in } L^{2}(\mathbb{P})
$$

Finally, we can observe that $R_{j} \rightarrow 0$ by a similar argument and this establishes the claim.

Part V

Stochastic Differential Equations

Chapter 7

Examples-Geometric Brownian Motions and OU Processes

In this chapter, we explain two examples that are solutions of SDEs; Geometric Brownian motions and Ornstein-Uhlenbeck Processes.
Examples 7.0.1 (Geometric Brownian Motions). Consider a population growth model and let $N=\left\{N_{t}\right\}$, where N_{t} is a number of certain population. Assume that it satisfies the following equation:

$$
d N_{t}=a N_{t} d t+\alpha N_{t} d W_{t} .
$$

(1) Find N_{t}. Note that $\frac{d N_{t}}{N_{t}}=a d t+\alpha d W_{t}$ and we have

$$
\int_{0}^{t} \frac{d N_{s}}{N_{s}}=a t+\alpha W_{t}
$$

We will find $\frac{d N_{t}}{N_{t}}$ using the Itô formula. Let $f(x)=\ln x$ and by the Itô formula we have

$$
d\left(\ln N_{t}\right)=\frac{d N_{t}}{N_{t}}+\frac{1}{2}\left(-\frac{1}{N_{t}^{2}}\right)\left(d N_{t}\right)^{2}=\frac{d N_{t}}{N_{t}}-\frac{1}{2 N_{t}^{2}} \alpha^{2} N_{t}^{2}=\frac{d N_{t}}{N_{t}}-\frac{1}{2} \alpha^{2} d t .
$$

Hence, $d\left(\ln N_{t}\right)=\frac{d N_{t}}{N_{t}}-\frac{1}{2} \alpha^{2} d t$ and we have

$$
\int_{0}^{t} \frac{d N_{s}}{N_{s}}=\int_{0}^{t} d\left(\ln N_{s}\right)+\frac{1}{2} \alpha^{2} d s=\ln \frac{N_{t}}{N_{0}}+\frac{1}{2} \alpha^{2} t=a t+\alpha W_{t}
$$

and we have

$$
N_{t}=N_{0} \exp \left(\left(a-\frac{1}{2} \alpha^{2}\right) t+\alpha W_{t}\right) .
$$

(2) Assume that the initial population N_{0} and $W=\left\{W_{t}\right\}$ are independent. Show that

$$
\mathbb{E}\left[N_{t}\right]=\mathbb{E}\left[N_{0}\right] e^{a t}
$$

That is, the expected population is the same as the case without the noise term. By the independence we have

$$
\mathbb{E}\left[N_{t}\right]=\mathbb{E}\left[N_{0}\right] \mathbb{E}\left[\exp \left(\left(a-\frac{1}{2} \alpha^{2}\right) t+\alpha W_{t}\right)\right]
$$

We focus on finding $\mathbb{E}\left[e^{\alpha W_{t}}\right]$. Let $Y_{t}=e^{\alpha W_{t}}$. Then, by the Itô formula, we have

$$
d Y_{t}=\alpha Y_{t} d W_{t}+\frac{1}{2} \alpha^{2} Y_{t} d t
$$

and

$$
Y_{t}=\int_{0}^{t} \alpha Y_{s} d W_{s}+\frac{1}{2} \alpha^{2} \int_{0}^{t} Y_{s} d s
$$

By taking an expectation and using the fact $\mathbb{E}\left[\int_{0}^{t} \alpha Y_{s} d W_{s}\right]=0$ as it is a martingale, we have

$$
\mathbb{E}\left[Y_{t}\right]=\frac{\alpha^{2}}{2} \int_{0}^{t} \mathbb{E}\left[Y_{s}\right] d s
$$

and

$$
\frac{d}{d t} \mathbb{E}\left[Y_{t}\right]=\frac{\alpha^{2}}{2} \mathbb{E}\left[Y_{t}\right]
$$

Hence, we have $\mathbb{E}\left[Y_{t}\right]=e^{\frac{1}{2} \alpha^{2} t}$.
Examples 7.0.2 (Ornstein-Uhlenbeck Processes). Consider the following OrnsteinUhlenbeck equation (or Langevin equation), which models Brownian particles under the influence of friction

$$
d X_{t}=\mu X_{t} d t+\sigma d W_{t}, \quad \mu, \sigma \in \mathbb{R}
$$

(1) Using the variation of parameter $Y_{t}=e^{-\mu t} X_{t}$, find the solution X_{t}.

By the stochastic chain rule $d\left(A_{t} B_{t}\right)=d\left(A_{t}\right) B_{t}+A_{t} d\left(B_{t}\right)+d A_{t} \cdot d B_{t}$, we have

$$
d Y_{t}=-\mu e^{-\mu t} X_{t} d t+e^{-\mu t} d X_{t}=e^{-\mu t} \sigma d W_{t} .
$$

Hence, we have $Y_{t}-Y_{0}=\int_{0}^{t} e^{-\mu s} \sigma d W_{s}$ and this gives

$$
X_{t}=e^{\mu t} X_{0}+\sigma \int_{0}^{t} e^{\mu(t-s)} d W_{s}
$$

(2) Find $\mathbb{E}\left[X_{t}\right]$ and $\operatorname{Cov}\left(X_{t}, X_{s}\right)$.

Clearly, $\mathbb{E}\left[X_{t}\right]=e^{\mu t} \mathbb{E}\left[X_{0}\right]$ and by the Itô isometry we have

$$
\begin{aligned}
& \operatorname{Cov}\left(X_{t}, X_{s}\right)=\mathbb{E}\left[\left(X_{t}-\mathbb{E}\left[X_{t}\right]\right)\left(X_{s}-\mathbb{E}\left[X_{s}\right]\right)\right] \\
= & \mathbb{E}\left[\sigma \int_{0}^{t} e^{\mu(t-u)} d W_{u} \cdot \sigma \int_{0}^{s} e^{\mu(s-u)} d W_{u}\right] \\
= & \sigma^{2} e^{\mu(t+s)} \mathbb{E}\left[\int_{0}^{\infty} 1_{(0, t)}(u) e^{-\mu u} d W_{u} \int_{0}^{\infty} 1_{(0, s)}(u) e^{-\mu u} d W_{u}\right] \\
= & \sigma^{2} e^{\mu(t+s)} \int_{0}^{t \wedge s} e^{-2 \mu u} d u=\sigma^{2} e^{\mu(t+s)} \frac{1-e^{-2 \mu(t \wedge s)}}{2 \mu}=\frac{\sigma^{2}}{2 \mu}\left(e^{\mu(t+s)}-e^{\mu|t-s|}\right) .
\end{aligned}
$$

Chapter 8

Existence and Uniqueness Theorem of SDE

In this note, we prove the uniqueness and existence of the stochastic differential equations (SDE).

Theorem 8.0.1. Let $T>0$ and $b(\cdot, \cdot):[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \sigma(\cdot, \cdot):[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times m}$ be measurable functions satisfying

$$
|b(t, x)|+|\sigma(t, x)| \leq C(1+|x|)
$$

and

$$
|b(t, x)-b(t, y)|+|\sigma(t, x)-\sigma(t, y)| \leq D|x-y|
$$

for some constants C and D. Let Z be a random variable which is independent of the σ-algebras generated by B and such that

$$
\mathbb{E}\left[|Z|^{2}\right]<\infty
$$

Then the stochastic differential equation

$$
d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d B_{t}, \quad 0 \leq t \leq T, X_{0}=Z
$$

has a unique t-continuous solution such that X is adapted to the filtration generated by Z and B and $\mathbb{E}\left[\int_{0}^{T}\left|X_{t}\right|^{2} d t\right]<\infty$.

Remark 8.0.2. The matrix form of the $\operatorname{SDE} d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d B_{t}$ is given by

$$
\left(\begin{array}{c}
d X_{t}^{(1)} \\
\vdots \\
d X_{t}^{(d)}
\end{array}\right)=\left(\begin{array}{c}
b^{(1)}\left(t, X_{t}\right) \\
\vdots \\
b^{(d)}\left(t, X_{t}\right)
\end{array}\right) d t+\left(\begin{array}{ccc}
\sigma_{11}\left(t, X_{t}\right) & \cdots & \sigma_{1 m}\left(t, X_{t}\right) \\
\vdots & \ddots & \vdots \\
\sigma_{d 1}\left(t, X_{t}\right) & \cdots & \sigma_{d m}\left(t, X_{t}\right)
\end{array}\right)\left(\begin{array}{c}
d B_{t}^{(1)} \\
\vdots \\
d B_{t}^{(m)}
\end{array}\right)
$$

Alternatively, we can write the SDE as

$$
X_{t}^{(j)}-X_{0}^{(j)}=\int_{0}^{t} b^{(j)}\left(s, X_{s}\right) d s+\sum_{k=1}^{m} \int_{0}^{t} \sigma_{j k}\left(s, X_{s}\right) d B_{s}^{(k)}, \quad j \in\{1, \cdots, d\} .
$$

We need the following Gronwall's Lemma for the proof of Theorem 8.0.1
Lemma 8.0.3. Let $u(t), \kappa(t) \geq 0$ be such that $u(t) \leq A+\int_{0}^{t} u(a) \kappa(a) d a$ for $0 \leq t \leq T$ for some constant A. Then,

$$
u(t) \leq A \exp \left(\int_{0}^{t} \kappa(a) d a\right) \text { for } 0 \leq t \leq T .
$$

Proof. Note that we have $\frac{u(s) \kappa(s)}{A+\int_{0}^{s} \kappa(a) u(a) d a} \leq \kappa(s)$ for $0 \leq s \leq t$. This implies $\frac{d}{d s} \ln \left(A+\int_{0}^{s} \kappa(a) u(a) d a\right)$ $\kappa(s)$. By integrating from 0 to t, we have $\ln \left(A+\int_{0}^{t} \kappa(a) u(a)\right) d a-\ln A \leq \int_{0}^{t} \kappa(a) d a$ and this implies

$$
A+\int_{0}^{t} \kappa(a) u(a) d a \leq A \exp \left(\int_{0}^{t} \kappa(a) d a\right) .
$$

Finally,

$$
u(t) \leq A+\int_{0}^{t} \kappa(a) u(a) d a \leq A \exp \left(\int_{0}^{t} \kappa(a) d a\right) .
$$

Proof of Theorem 8.0.1 Uniqueness The main tool to prove the uniqueness is the Gronwall's lemma. Let X_{t} and X_{t} be two solutions of the following SDEs

$$
d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d B_{t}, X_{0}=Y_{0}, t \in[0, T],
$$

and

$$
d \tilde{X}_{t}=b\left(t, \tilde{X}_{t}\right) d t+\sigma\left(t, \tilde{X}_{t}\right) d B_{t}, \tilde{X}_{0}=\tilde{Y}_{0}, t \in[0, T],
$$

Using a simple inequality $(x+y+z)^{2} \leq 3\left(x^{2}+y^{2}+z^{2}\right)$ we have

$$
\begin{aligned}
& \mathbb{E}\left[\left|X_{t}-\tilde{X}_{t}\right|^{2}\right] \\
= & \mathbb{E}\left[\left(\left(Y_{0}-\tilde{Y}_{0}\right)+\int_{0}^{t}\left(b\left(s, X_{s}\right)-b\left(s, \tilde{X}_{s}\right)\right) d s+\int_{0}^{t}\left(\sigma\left(s, X_{s}\right)-\sigma\left(s, \tilde{X}_{s}\right)\right) d B_{s}\right)^{2}\right] \\
\leq & 3\left(\mathbb{E}\left[\left(Y_{0}-\tilde{Y}_{0}\right)^{2}\right]+\left(\int_{0}^{t}\left(b\left(s, X_{s}\right)-b\left(s, \tilde{X}_{s}\right)\right) d s\right)^{2}+\left(\int_{0}^{t}\left(\sigma\left(s, X_{s}\right)-\sigma\left(s, \tilde{X}_{s}\right)\right) d B_{s}\right)^{2}\right) .
\end{aligned}
$$

By Cauchy-Schwarz inequality and the condition on b, we have

$$
\begin{aligned}
& \left(\int_{0}^{t}\left(b\left(s, X_{s}\right)-b\left(s, \tilde{X}_{s}\right)\right) d s\right)^{2} \\
\leq & \int_{0}^{t} 1 d s \cdot \int_{0}^{t}\left(b\left(s, X_{s}\right)-b\left(s, \tilde{X}_{s}\right)\right)^{2} d s \\
\leq & t D^{2} \int_{0}^{t}\left|X_{s}-\tilde{X}_{s}\right|^{2} d s
\end{aligned}
$$

By Itô isometry and the condition on b, we have

$$
\begin{aligned}
& \mathbb{E}\left[\left(\int_{0}^{t}\left(\sigma\left(s, X_{s}\right)-\sigma\left(s, \tilde{X}_{s}\right)\right) d B_{s}\right)^{2}\right] \\
= & \mathbb{E}\left[\int_{0}^{t}\left(\sigma\left(s, X_{s}\right)-\sigma\left(s, \tilde{X}_{s}\right)\right)^{2} d s\right] \\
\leq & D^{2} \mathbb{E}\left[\int_{0}^{t}\left|X_{s}-\tilde{X}_{s}\right|^{2}\right] .
\end{aligned}
$$

Hence, we conclude that

$$
\mathbb{E}\left[\left|X_{t}-\tilde{X}_{t}\right|^{2}\right] \leq 3 \mathbb{E}\left[\left(Y_{0}-\tilde{Y}_{0}\right)^{2}\right]+3 D^{2}(1+T) \mathbb{E}\left[\int_{0}^{t}\left|X_{s}-\tilde{X}_{s}\right|^{2}\right]
$$

By Gronwall's lemma we conclude that

$$
\mathbb{E}\left[\left|X_{t}-\tilde{X}_{t}\right|^{2}\right] \leq 3 \mathbb{E}\left[\left(Y_{0}-\tilde{Y}_{0}\right)^{2}\right] \exp \left(3 D^{2}(1+T) t\right), \quad t \in[0, T]
$$

As $Y_{0}=\tilde{Y}_{0}=Z$, we conclude that $\mathbb{E}\left[\left|X_{t}-\tilde{X}_{t}\right|^{2}\right]=0$ for all $t \in[0, T]$ and $X_{t}=\tilde{X}_{t}$ a.e. for all $t \in[0, T]$. Hence, there is $\Omega^{\prime} \subset \Omega$ with $\mathbb{P}\left(\Omega^{\prime}\right)=1$ such that

$$
X_{t}(\omega)=\tilde{X}_{t}(\omega) \text { for all } t \in[0, T] \cap \mathbb{Q} \text { and } \omega \in \Omega^{\prime}
$$

From the continuity, we conclude that

$$
X_{t}(\omega)=\tilde{X}_{t}(\omega) \text { for all } t \in[0, T] \text { and } \omega \in \Omega^{\prime}
$$

Existence and Continuity

We define $Y_{t}^{(n)}$ inductively as

$$
Y_{t}^{(0)}=X_{0}
$$

and

$$
Y_{t}^{(n+1)}=X_{0}+\int_{0}^{t} b\left(s, Y_{s}^{(n)}\right) d s+\int_{0}^{t} \sigma\left(s, Y_{s}^{(n)}\right) d B_{s}
$$

By a similar calculation as above, we have

$$
\begin{equation*}
\mathbb{E}\left[\left|Y_{t}^{(n+1)}-Y_{t}^{(n)}\right|^{2}\right] \leq 3 D^{2}(1+t) \mathbb{E}\left[\int_{0}^{t}\left|Y_{s}^{(n)}-Y_{s}^{(n-1)}\right|^{2} d s\right] \tag{8.1}
\end{equation*}
$$

We also have

$$
\begin{align*}
& \mathbb{E}\left[\left|Y_{t}^{(1)}-Y_{t}^{(0)}\right|^{2}\right] \\
= & \mathbb{E}\left[\left(\int_{0}^{t} b\left(s, X_{0}\right) d s+\int_{0}^{t} \sigma\left(s, X_{0}\right) d B_{s}\right)^{2}\right] \\
\leq & 2 \mathbb{E}\left[\left(\int_{0}^{t} b\left(s, X_{0}\right) d s\right)^{2}+\left(\int_{0}^{t} \sigma\left(s, X_{0}\right) d B_{s}\right)^{2}\right] \\
\leq & 2 t \mathbb{E}\left[\int_{0}^{t} b\left(s, X_{0}\right)^{2} d s\right]+2 \mathbb{E}\left[\int_{0}^{t} \sigma\left(s, X_{0}\right)^{2} d s\right] \\
\leq & 2 t(1+t) C^{2} \mathbb{E}\left[\left(1+X_{0}\right)^{2}\right] . \tag{8.2}
\end{align*}
$$

From (8.1) and (8.2) we conclude that

$$
\mathbb{E}\left[\left|Y_{t}^{(n+1)}-Y_{t}^{(n)}\right|^{2}\right] \leq \frac{c^{n+1} t^{n+1}}{(n+1)!}
$$

This shows that $Y_{t}^{(n)}$ is uniformly Caychy in $L^{2}(\Omega)$ and it converges uniformly to $X_{t}, t \in[0, T]$. As all $Y_{t}^{(n)}$ are continuous, this shows that X_{t} is continuous as a uniform limit of continuous functions.
Finally, note that by Cauchy-Schwarz inequality we have

$$
\begin{aligned}
& \mathbb{E}\left[\left(\int_{0}^{t} b\left(s, Y_{s}^{(n)}\right)-b\left(s, X_{s}\right) d s\right)^{2}\right] \\
\leq & \mathbb{E}\left[t \int_{0}^{t}\left(b\left(s, Y_{s}^{(n)}\right)-b\left(s, X_{s}\right)\right)^{2} d s\right] \\
\leq & t D^{2} \mathbb{E}\left[\int_{0}^{t}\left|Y_{s}^{(n)}-X_{s}\right|^{2} d s\right] \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

by a uniform convergence theorem. By a similar argument with Itô isometry, we also have

$$
\mathbb{E}\left[\left(\int_{0}^{t} \sigma\left(s, Y_{s}^{(n)}\right)-\sigma\left(s, X_{s}\right) d B_{s}\right)^{2}\right] \rightarrow 0 \text { as } n \rightarrow \infty
$$

Hence, by taking a limit to

$$
Y_{t}^{(n+1)}=X_{0}+\int_{0}^{t} b\left(s, Y_{s}^{(n)}\right) d s+\int_{0}^{t} \sigma\left(s, Y_{s}^{(n)}\right) d B_{s}
$$

we conclude that X_{t} satisfies the SDE.

Part VI

Bibliography

Bibliography

[1] K. L. Chung and Z. Zhao. From Brownian motion to Schrödinger's equation. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 312. Springer-Verlag, Berlin, 1995. xii+287 pp. ISBN: 3-540-57030-6.
[2] J. Le Gall: Brownian motion, Martingales, and Stochastic Calculus. Graduate Texts in Mathematics, 274. Springer, [Cham], 2016. xiii+273 pp. ISBN: 978-3-319-31088-6; 978-3-319-31089-3.
[3] V. N. Kolokoltsov. Markov processes, semigroups and generators. De Gruyter Studies in Mathematics, 38. Walter de Gruyter \& Co., Berlin, 2011. xviii+430 pp. ISBN: 978-3-11-025010-7.
[4] David Williams. Probability with Martingales. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991. xvi+251 pp. ISBN: 0-521-40455-X; 0-521-40605-6.

Hyunchul Park

Department of Mathematics, State University of New York at New Paltz, NY 12561, USA
E-mail: parkh@newpaltz.edu

