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Part II

Warming Up - What Can One Prove
in Analysis using Probability?

3





Chapter 1

Stone-Weierstrass Theorem

Probability is one branch of mathematics that studies randomness. It has close connections to
other areas of mathematics and is very useful to solve problems in different areas of mathemat-
ics. As an illustration, we prove the Stone-Weierstrass theorem using binomial distributions and
Chebyshev inequality.
Here is a statement of the theorem.

Theorem 1.0.1. Let f(x) be continuous on [0, 1]. Then, for any ε > 0 there
exists a polynomial Bn(x) such that

sup
x∈[0,1]

|f(x)−Bn(x)| < ε.

Proof. Let Xi be iid Bernoulli random variables with P(Xi = 1) = p ∈ (0, 1) and Sn =
X1 + · · ·Xn. Note that the distribution of Sn is a binomial distribution with parameters n and
p. We define

Bn(p) := E[f(
Sn
n

)] =
n∑
k=0

f(
k

n
)

(
n

k

)
pk(1− p)n−k.

Since f(x) is uniformly continuous on [0, 1], for given ε > 0 there exists a δ = δ(ε) > 0 such that

|f(x)− f(y)| < ε if |x− y| < δ.

Let K = sup
x∈[0,1]

|f(x)| <∞. Then, we have

|Bn(p)− f(p)| =
∣∣∣∣E[f(

Sn
n

)]− f(p)

∣∣∣∣
≤E[

∣∣∣∣f(
Sn
n

)− f(p)

∣∣∣∣]
≤E[

∣∣∣∣f(
Sn
n

)− f(p)

∣∣∣∣ , |Snn − p| < δ] + E[

∣∣∣∣f(
Sn
n

)− f(p)

∣∣∣∣ , |Snn − p| ≥ δ].

Note that
E[

∣∣∣∣f(
Sn
n

)− f(p)

∣∣∣∣ , |Snn − p| < δ] ≤ εP(|Sn
n
− p| < δ) ≤ ε.
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By the Chebyshev inequality and the fact that Var(Sn) =
nVar(X1)

n2
=
p(1− p)

n
≤ 1

4n
, we have

E[

∣∣∣∣f(
Sn
n

)− f(p)

∣∣∣∣ , |Snn − p| ≥ δ] ≤ 2KP(|Sn
n
− p| ≥ δ) ≤ 2K

δ2
Var(Sn

n
) ≤ K

2nδ2
.

Now take n large so that K

2nδ2
< ε and we obtain

sup
p∈[0,1]

|Bn(p)− f(p)| < 2ε.

�
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Part III

Construction of Brownian Motions
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Chapter 2

L1-method; Broken Line
Approximation

A Brownian motion or Wiener process is a stochastic process that satisfies the following condi-
tions:

(1) B0 = 0 a.s.;

(2) the increments Bt −Bs have N(0, t− s) distribution for all 0 ≤ s ≤ t;

(3) the increments Bt2 −Bt1 and Bt4 −Bt3 are independent whenever 0 ≤ t1 ≤ t2 ≤ t3 ≤
t4;

(4) the trajectories t→ Bt are a.s. continuous.

The first question we must answer is if there exist such processes?

2.1 Observation on the Sample Paths of Brownian Motions

We start with a simple observation on the sample path of Brownian motions. Let B = {Bt}t≥0

be a Brownian motions. Then, for each t > 0 we haveBt = Bt/2 + (Bt −Bt/2) = Bt/2 + B̃t/2,

Bt/2 =
1

2
Bt +

1

2
(Bt/2 − B̃t/2),

where B̃t = Bt−Bt/2. Hence, Bt is a sum of independent normal random variables with variance
t

2
, and Bt/2 is a sum of 1

2
Bt and

1

2
(Bt/2− B̃t/2), which is independent of Bt/2 + B̃t/2 as one can

see from the following simple fact.

Lemma 2.1.1. Let X and Y are independent normal distributions with pa-
rameters 0 and σ2. Then, X + Y and X − Y are independent N(0, 2σ2) distri-
butions.
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Proof. Note that
E[eiξX ] = E[eiξY ] = e−

σ2|ξ|2
2 .

Hence, we have

E[eiξ1(X+Y )eiξ2(X−Y )] = E[ei(ξ1+ξ2)Xei(ξ1−ξ2)Y ] = e−
σ2(ξ1+ξ2)

2

2 e−
σ2(ξ1−ξ2)

2

2 = e−σ
2|ξ1|2e−σ

2|ξ2|2 .

�

2.2 Reconstruction of Sample Paths using Broken-Line Approx-
imation

Now let (Ω,F ,P) be a probability space with independent normal distributions Y0 and Y k
n , n ∈ N,

k ∈ {1, 2, · · · , 2n−1} with Var(Y k
n ) =

1

2n+1

(1) We define X0(t), t ∈ [0, 1] as
X0(t) = tY0.

t 1t

Y0

X0(t)

(2) We define X1(t) as 
X1(0) = 0,

X1(1) = X0(1) = Y0,

X1(
1

2
) =

1

2
Y0 + Y 1

1 = X0(
1

2
) + Y 1

1 ,

X1(t) is linear between these points.

1

2

1

Y0

X0(
1

2
)

X1(
1

2
)

Y 1
1

1

2

1

Y0

X0(
1

2
)

X1(
1

2
)

X2(
1

4
) X2(

3

4
)
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(3) In general, we repeat the process as follows:
Xn(0) = 0,

Xn(1) = Y0,

Xn(
2k − 1

2n
) = Xn−1(

2k − 1

2n
) + Y k

n ,

Xn(t) is linear between these points.

2k − 1

2n
k

2n−1

k − 1

2n−1

Xn−1(
2k − 1

2n
)

Xn(
2k − 1

2n
)

Y k
n

(4) Note that by the construction we have

Xn(
2k − 1

2n
)−Xn(

2k − 2

2n
) =

1

2

(
Xn−1(

k

2n−1
)−Xn−1(

k − 1

2n−1
)

)
+ Y k

n ,

and
Xn(

k

2n−1
)−Xn(

2k − 1

2n
) =

1

2

(
Xn−1(

k

2n−1
)−Xn−1(

k − 1

2n−1
)

)
− Y k

n .

Note that the variance of the two expressions above are both 1

4

1

2n−1
+

1

2n+1
=

1

2n
and the

two are independent of each other from Lemma 2.1.1

(5) Note that

sup
t∈[0,1]

|Xn(t)−Xn−1(t)| ≤ max
1≤k≤2n−1

|Xn(
k

2n
)−Xn−1(

k

2n
)|

= max
1≤k≤2n−1

|Y k
n | ≤

(
2n−1∑
k=1

|Y k
n |4
)1/4

,

and by Jensen’s inequality we have

E[ sup
t∈[0,1]

|Xn(t)−Xn−1(t)|] ≤ E

(2n−1∑
k=1

|Y k
n |4
)1/4

 ≤ E

[
2n−1∑
k=1

|Y k
n |4
]1/4

≤(2n−1c(
1

2n+1
)2)1/4 = c1/42−

n+3
4 ,
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where we used the fact that E[N2n] = cnσ
2n for N ∼ N(0, σ2) and some constant cn. This

implies that
∞∑
n=1

E[ sup
t∈[0,1]

|Xn(t)−Xn−1(t)|] <∞.

This shows the following.

Theorem 2.2.1. The processes Xn(t) converge a.s. and in L1 to a contin-
uous process X(t) so that

E[ sup
t∈[0,1]

|Xn(t)−X(t)|]→ 0, n→∞,

and also a.s.
sup
t∈[0,1]

|Xn(t)−X(t)| → 0, n→∞,

The limiting process X(t) is a standard Brownian Motion on [0, 1].

2.3 Exercises

(1) Let X be a standard normal distribution.

(a) Show that the moment generating function is MX(λ) = E[eλX ] = e
λ2

2 for all λ ∈ R.
(b) Show that

E[X2n+1] = 0, E[X2n] =
(2n)!

2nn!
, n ∈ N.

(2) Prove Theorem 2.2.1 as follows:
(a) Show that {Xn(t)} is uniformly Cauchy in L1(Ω,P), that is, for any ε > 0 there exists

N = N(ε) such that
E[|Xn(t)−Xm(t)|] < ε for all n,m ≥ N and t ∈ [0, 1].

Hence, Xt = lim
n→∞

Xn(t) exists in L1(Ω,P) and lim
n→∞

E[ sup
t∈[0,1]

|Xn(t)−X(t)|] = 0.

(b) Let N be a standard normal random variable. Then, for any constant A > 0 we have

P(|N | ≥ A) ≤ e−
A2

2 ,

Solution.

P(N ≥ A) =

∫ ∞
A

1√
2π
e−

x2

2 dx =

∫ ∞
0

1√
2π
e−

(x+A)2

2 dx

=

∫ ∞
0

1√
2π
e−

x2

2 × e−
2xA+A2

2 dx

≤
∫ ∞

0

1√
2π
e−

x2

2 × e−
A2

2 dx =
1

2
× e−

A2

2 .
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(c) Use Borel-Cantelli Lemma to show that for a.e. ω ∈ Ω there exists N = N(ω) such that

|Y k
n | ≤

√
n2−

n+1
2 for all n ≥ N(ω).

Solution. Note that

P(2
n+1
2 |Y k

n | ≥
√
n) ≤ e−

n
2 for all n ≥ 1,

and by Borel-Cantelli Lemma the result follows. �

(d) Show that Xn(t) converges uniformly to Xt a.s. (Hence, t→ Xt is continuous a.s.).

Solution. From the previous question, for a.e. ω there exists N(ω) such
that for all n ≥ N

sup
t∈[0,1]

|Xn(t)−Xn−1(t)| ≤ max
1≤k≤2n−1

|Xn(
k

2n
)−Xn−1(

k

2n
)| ≤= max

1≤k≤2n−1
|Y k
n | ≤

√
n2−

n+1
2 .

�

(e) Show that Xt+s −Xt is independent of σ(Xu, u ≤ t) and has N(0, s) distribution.

Solution. It is enough to show that

E[eiξ1(Xt+s−Xt)eiξ2Xu ] = e−
ξ21
2
se−

ξ22
2
u for any u ≤ t and ξ1, ξ2 ∈ R.

This is true if all t, s, u are dyadic integers. For a general case, take se-
quences of dyadic integers {tn}, {sn} and {un} such that lim tn = t, lim sn =
s, limun = u. By continuity, limXtn = Xt, limXsn = Xs, and limXun = Xu and
it follows from the dominated convergence theorem

E[eiξ1(Xt+s−Xt)eiξ2Xu ] = lim
n→∞

E[eiξ1(Xtn+sn−Xtn )eiξ2Xun ]

= lim
n→∞

e−
ξ21
2
sne−

ξ22
2
un = e−

ξ21
2
se−

ξ22
2
u.

�
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Chapter 3

L2-method; Gaussian White Noise

Now we turn our attention to constructing Brownian motions. We will construct the Gaussian
white noise, which is an isometry from L2([0, 1], dx) into a space of centered Gaussian distribu-
tions. Brownian motions W = {Wt}t≥0 will be constructed as an image of 1[0,t](x) under this
Gaussian white noise.
For every t ∈ [0, 1], we define Haar functions

h0(t) = 1, t ∈ [0, 1],

and

hnk(t) = 2n/2 × 1{[ 2k
2n+1 ,

2k+1

2n+1 )}(t)− 2n/2 × 1{[ 2k+1

2n+1 ,
2k+2

2n+1 )}(t),

where n ∈ {0, 1, 2, · · · } and k ∈ {0, 1, 2, · · · , 2n − 1}.

(1)

Show that {h0, h
n
k}, n ∈ {0, 1, 2, · · · } and k ∈ {0, 1, 2, · · · , 2n−1} form an orthonor-

mal basis for L2([0, 1],B[0, 1], dt).

f(x)

1

3

h0(x)

f(x) = 3h0(x)

1

1
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g(x)
2

−1

2

−1

0.5
g̃(x)

g̃(x) =
1

2
h0

0(x)

g(x) = g̃(x)− 3

2
· 2−1/2h0

0(x)

Proof. It is enough to show that for any step function f(x) which has constant values on
intervals of the form [

k − 1

2n
,
k

2n
), k ∈ {1, 2, · · · , 2n} can be represented as a linear combina-

tion of h0 and hjk, j ∈ {0, 1, 2, · · · , n− 1} since polynomials can be approximated by these
step functions and by Stone-Weierstrass Theorem (Theorem 1.0.1) polynomials are dense in
the space of continuous functions for uniform norm on [0, 1].
We prove this using a mathematical induction. This is trivial when n = 0. Suppose this holds
for some n − 1. Let f(x) be a step function whose values are constants on intervals of the
form [

k − 1

2n+1
,
k

2n+1
), k ∈ {1, 2, · · · , 2n+1}. Define an ancestor f̃(x) of f(x) whose values are

constant on intervals of the form [
k − 1

2n
k

2n
) and the values are determined by the average

of f(x). That is,

f̃(x) =
f(2k−2

2n+1 ) + f(2k−1
2n+1 )

2
, x ∈ [

k − 1

2n
k

2n
).

By the induction hypothesis f̃(x) can be represented as a linear combination of h0 and hjk,
j ∈ {0, 1, 2, · · · , n− 1}. Then, for each interval of the form [

2l − 2

2n+1
,

2l

2n+1
), let

gnl−1(x)

=

(
f(

2l − 2

2n+1
))− f̃(

l − 1

2n
)

)
hnl−1(x)

2n/2

=
1

2

(
f(

2l − 2

2n+1
))− f(

2l − 1

2n
)

)
hnl−1(x)

2n/2
.

Finally define

g(x) = f̃(x) +
2n∑
l=1

gnl−1(x)

= f̃(x) +
2n∑
l=1

1

2

(
f(

2l − 2

2n+1
))− f(

2l − 1

2n
)

)
hnl−1(x)

2n/2
.
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Then it is easy to observe that

g(
2l − 2

2n+1
)

= f̃(
l − 1

2n
) +

1

2

(
f(

2l − 2

2n+1
))− f(

2l − 1

2n
)

)
=

1

2

(
f(

2l − 2

2n+1
) + f(

2l − 1

2n+1

)
+

1

2

(
f(

2l − 2

2n+1
))− f(

2l − 1

2n
)

)
= f(

2l − 2

2n+1
),

and

g(
2l − 1

2n+1
)

= f̃(
l − 1

2n
) +

1

2

(
f(

2l − 2

2n+1
))− f(

2l − 1

2n
)

)
× (−1)

=
1

2

(
f(

2l − 2

2n+1
) + f(

2l − 1

2n+1

)
− 1

2

(
f(

2l − 2

2n+1
))− f(

2l − 1

2n
)

)
= f(

2l − 1

2n+1
).

Hence g(x) = f(x) for all x ∈ [0, 1]. �

(2)

Let (E, E) be a measurable space, and let µ be a σ-finite measure on (E, E). A
Gaussian white noise with intensity µ is an isometry G from L2(E, E , µ) into a centered
Gaussian space.

Suppose thatN0,N n
k , n ∈ {0, 1, 2, · · · } and k ∈ {0, 1, 2, · · · , 2n−1}, are independent,

standard random variables on some probability space (Ω,F ,P). Show that there exists
a Gaussian white noise such that

G(h0) = Nn, and G(hnk) = N n
k .

Proof. For each f ∈ L2([0, 1], dx) can be written uniquely as

f(x) = c0h0 +
∞∑
n=0

2n−1∑
k=0

cnkh
n
k

with

‖f‖2
2 = c2

0 +
∞∑
n=0

2n−1∑
k=0

(cnk)2 <∞.

17



Let G(fm) = c0N0 +
m∑
n=0

2n−1∑
k=0

cnkN n
k . Note that by independence of N and N n

k

E[(G(fm)−G(fl))
2] = E

[
l∑

n=m+1

2n−1∑
k=0

(cnk)2(N n
k )2

]
=

l∑
n=m+1

2n−1∑
k=0

(cnk)2 → 0

as m, l→∞. Hence G(fm) is Cauchy in L2(Ω,F ,P). We denote its limit by

G(f) = lim
m
G(fm) = c0N0 +

∞∑
n=0

2n−1∑
k=0

cnkN n
k .

Clearly this G has the desired property. �

(3)

For each t ∈ [0, 1] set Bt := G(1[0,t]). Show that

Bt = tN0 +
∞∑
n=0

(
2n−1∑
k=0

gnk (t)N n
k

)
,

where
gnk (t) =

∫ t

0

hnk(s)ds.

gnk (t) are called Schauder functions.

Proof. Write

1[0,t] = c0h0 +
∞∑
n=0

2n−1∑
k=0

cnkh
n
k .

Then
c0 = 〈1[0,t], h0〉 =

∫ 1

0

1[0,t](s)ds = t,

and
cnk = 〈1[0,t], h

n
k〉 =

∫ t

0

hnk(s)ds.

�
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(4) In this step, we show that Bm
t converges uniformly to Bt. A key ingredient is the following

Borel-Cantelli lemma.

Lemma 3.0.1 (Borel-Cantelli lemma). Let An be events on a probability

space (Ω,F ,P) such that
∞∑
n=1

P(An) <∞. Then, P(lim sup
n

An) = 0.

Proof. From lim sup
n

An =
∞⋂
n=1

∞⋃
m=n

Am, we have lim sup
n

An ⊂
∞⋃
m=n

Am for any n ∈ N.

Now the conclusion follows immediately from

P(lim sup
n

An) ≤ P(
∞⋃
m=n

Am) ≤
∞∑
m=n

P(Am)→ 0.

�

For each m ≥ 0 and t ∈ [0, 1] define

Bm
t = tN0 +

m∑
n=0

(
2n−1∑
k=0

gnk (t)N n
k

)
.

Show that Bm
t converges uniformly to Bt on [0, 1] almost surely.

Proof. The key idea is to choose a clever choice of cn with cn → 0 so that

∑
n

P

(
2n−1∑
k=0

gnk (t)N n
k > cn

)
<∞,

and use Borel-Cantelli lemma.
First note that for the standard normal random variable N and c ≥ 1 we have

P(|N | ≥ c) = 2

∫ ∞
c

1√
2π
e−

x2

2 dx ≤
√

2

π

∫ ∞
c

xe−
x2

2 dx =

√
2

π
e−

c2

2 .
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Note that supports of functions gnk (t) are all disjoint and |gnk (t)| ≤ 2n/2

2n
= 2−

n
2 . Hence we

have

P

(
2n−1∑
k=0

gnk (t)N n
k > cn

)
≤ P(2−

n
2 sup

0≤k≤2n−1
N n
k > cn)

= P
(

sup
0≤k≤2n−1

N n
k > 2

n
2 cn

)
≤
√

2

π
exp(−c

2
n2n

2
).

Now let cn = 2−
n
4 so that cn → 0 and

∑
n

exp(−c
2
n2n

2
) =

∑
n

exp(−2n/2

2
) <∞.

Now it follows from Borel-Cantelli lemma we have

P

(
lim sup{

2n−1∑
k=0

gnk (t)N n
k > 2−

n
4 }

)
= 0.

Hence for almost every ω ∈ Ω there exists N = N(ω) such that
2n−1∑
k=0

gnk (t)N n
k ≤ 2−

n
4

for all n ≥ N(ω). This shows that Bm
t converges uniformly for all t ∈ [0, 1]. �

(5)

Hence we can, for every t ∈ [0, 1], select a random variable B′t which is a.s. equal to
Bt, in such a way that the mapping t 7→ B′t(ω) is continuous for every ω ∈ Ω.

Proof. Since the uniform limit of continuous functions is continuous, Bt is continuous on
Ω′ with P(Ω′) = 1. Define

B
′

t(ω) =

{
Bt(ω) if ω ∈ Ω′,

0 if ω /∈ Ω′.

�
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Chapter 4

Probabilistic Solution to Dirichlet
Problem

Let D be a domain in Rd. We say a point z ∈ ∂D is a regular boundary point if Pz(τD = 0) =
1. Let (∂D)r be a collection of all regular boundary points. A domain D is called regular if
(∂D)r = ∂D.

Theorem 4.0.1. For any domain (bounded or unbounded) D and any f ∈
L∞(∂D), the function HDf defined in Rd by

HDf(x) = Ex[τD <∞, f(WτD)]

is harmonic in D. If, in addition, z ∈ (∂D)r and f is continuous at z, then

lim
x→z,x∈D

HDf(x) = f(z).

Before proving the theorem we need to recall some facts. If follows from [1, Theorem 1.17] we
have

sup
x∈Rd

Ex[τD] ≤ Ad|D|2/d, Ad =
d+ 2

2πd
(
d+ 2

2
)2/d. (4.1)

In particular, if |D| <∞, then Ex[τD] <∞ a.s.

Lemma 4.0.2. Let D ⊂ Rd and B is an open ball with B̄ ⊂ D. Then, we have

1. τB + τD · θτB = τD.

2. WτD · θτB = WτD .

3. Let Φ = 1{τD<∞}f(WτD). Then, Φ = Φ · θτB .

Proof. First, it follows from (4.1) τB <∞ a.s. Note that for all such ω ∈ Ω with τB(ω) <∞
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we have
τD · θτB(ω)

= inf{t > 0 : Xt(θτB(ω)) /∈ D}
= inf{t > 0 : θτB(ω)(t) /∈ D}
= inf{t > 0 : ω(τB(ω) + t) /∈ D}
= τD(ω)− τB(ω).

Second, note that for any stopping time we define Xτ (ω) := X(τ(ω), ω). Hence, we have
WτD · θτB(ω)

= X(τD(θτB(ω)), θτB(ω))

= X(τB(ω) + τD(θτB(ω)), ω)

= X(τD(ω), ω)

= WτD(ω),

where we used τB + τD · θτB = τD in the middle.
Third, note that

Φ · θτB(ω) = 1{τD<∞}(θτB(ω))f(WτD(θτB(ω)).

From the second, we have WτD(θτB(ω)) = WτD(ω). Note that 1{τD<∞}(ω) = 1 if and only if
τD(ω) <∞. Observe that 1{τD<∞}(θτB(ω)) = 1 if and only if

τD(θτB(ω)) = τD(ω)− τB(ω) <∞.

Since τB <∞ a.s., we conclude that 1{τD<∞}(θτB(ω)) = 1 if and only if τD(ω) <∞ a.s. �

Proof of Theorem 4.0.1 We first prove that HDf(x) is harmonic in D by showing that it has
a sphere averaging property. Let x ∈ D and B = B(x, r) with B̄ ⊂ D. By Lemma 4.0.2 and
the strong Markov property at τB we have

HDf(x) = Ex[Φ] = Ex[Φ · θτB ]

= Ex[EXτB [Φ]]

=

∫
S(x,r)

Eu[Φ]Px(XτB(x,r)
∈ du)

=
1

σ(S(x, r))

∫
S(x,r)

Eu[Φ]σ(du)

=
1

σ(S(x, r))

∫
S(x,r)

HDf(u)σ(du),

where we used the fact that the distribution of Px(XτB(x,r)
∈ du) is a uniform measure on S(x, r).

Now fix z ∈ (∂D)r = {w ∈ Rd : Pw(τD = 0) = 1}. Given ε > 0 take δ1 = δ1(ε) such that
|f(x)− f(z)| < ε for all |x− z| < δ1. Note that

Ex[τD <∞, |f(WτD)− f(z)|]
= Ex[τD <∞, |f(WτD)− f(z)| , τB(z,δ) > τD] + Ex[τD <∞, |f(WτD)− f(z)| , τB(z,δ) ≤ τD]

≤ ε+ Ex[τD <∞, |f(WτD)− f(z)| , τB(z,δ) ≤ τD],
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where we used the fact on {τB(z,δ) > τD} WτD ∈ B(z, r) and |f(WτD)− f(z)| < ε. The second
expression above can be bounded above by

Ex[τD <∞, |f(WτD)− f(z)| , τB(z,δ) ≤ τD] ≤ 2‖f‖∞Px(τB(z,δ) ≤ τD).

The intuitive idea is that when x is near z ∈ (∂D)r, τD must be small and this makes the
probability small. For x ∈ B(z, δ) we have B(x, δ/2) ⊂ B(z, δ) and τB(x,δ/2) ≤ τB(z,δ). Hence,
we have

Px(τB(z,δ) ≤ τD) ≤ Px(τB(x,δ/2) ≤ τD).

By the path continuity we have Px(τB(x,δ/2) > 0) = 1 or Px(τB(x,δ/2) = 0) = 0. Since
lim
n→∞

Px(τB(x,δ/2) ≤ 1/n) = Px(τB(x,δ/2) = 0) = 0, we can take s > 0 such that

Px(τB(x,δ/2) ≤ s) < ε. (4.2)

Fix this s > 0. Note that

Px(τB(z,δ) ≤ τD)

≤ Px(τB(x,δ/2) ≤ s or τD > s)

≤ Px(τB(x,δ/2) ≤ s) + Px(τD > s).

Since z ∈ (∂D)r we have Pz(τD > s) = 0. The map x→ Px(τD > s) is upper-semi-continuous
and we have

lim sup
x→z

Px(τD > s) ≤ Pz(τD > s) = 0.

Hence, lim
x→z

Px(τD > s) = 0 or
lim
x→z

Px(τD ≤ s) = 1. (4.3)

Take δ2 = δ2(ε) such that
Px(τD > s) < ε (4.4)

for all x ∈ D̄ with |x− z| < δ2.
Now let δ = min(δ1, δ2). For any x ∈ D̄ with |x− z| < δ we have from (4.2) and (4.4)

Ex[τD <∞, |f(WτD)− f(z)|]
≤ ε+ Ex[τD <∞, |f(WτD)− f(z)| , τB(z,δ) ≤ τD]

≤ ε+ 2‖f‖∞Px(τB(z,r) ≤ τD)

≤ ε+ 2‖f‖∞
(
Px(τB(x,δ/2) ≤ s) + Px(τD > s)

)
≤ ε+ 4ε‖f‖∞.

Hence, we have
lim

x→z,x∈D̄
HDf(x) = lim

x→z,x∈D̄
Px(τD <∞) · f(z).

Finally, it follows from (4.3) we have lim
x→z,x∈D̄

Px(τD <∞) = 1. �

It is well-known that for Lipschitz domainD, all boundary points are regular for Brownian motions.
Hence, we have the following theorem.
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Theorem 4.0.3. Let D ⊂ Rd be a bounded Lipchitz domain and f is contin-
uous on ∂D. Then, there exists a unique solution to the following Dirichlet
problem {

∆u(x) = 0, x ∈ D,
u(z) = f(z), z ∈ ∂D.

Furthermore, u is given by

u(x) = Ex[f(WτD)].
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Part IV

Stochastic Integrals with respect to
Brownian Motions
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Chapter 5

Stochastic Integral with respect to
Brownian Motions

In this chapter, we will define the stochastic integral (Itô integral) I(f) =

∫ T

0

f(t, ω)dWt. Note

that E[eiθWt ] = e−t|θ|
2/2 and this shows thatWt and t1/2W1 has the same distribution. This means

that locally Wt moves as fast as
√
t and Wt cannot be of bounded variation as

∑ 1√
n

= ∞.
Hence, the Lebesgue-Stieltjes integral does not work as the sample t → Wt is not of bounded
variation. We will overcome this by defining the stochastic integral as an element in L2(P).
There are a few steps to achieve this:

1. Define I(f) when f is elementary.

2. Use the Itô’s isometry E[I(f)2] = E[

∫ T

0

f(t, ω)2dt] to extend I(f) for f ∈ L2((0, T )⊗ P)

Definition 5.0.1. Fix T > 0. We define V = V (T ) be a collection of functions
f such that

(1) (t, ω)→ f(t, ω) is B ⊗ F -measurable.

(2) For each t > 0, f(t, ω) ∈ Ft (Ft-adapted).

(3) E[

∫ T

0

f(t, ω)2dt] <∞.

Definition 5.0.2. A function φ is called elementary if it can be written as

φ(t, ω) =
∑
j

ej(ω)1[tj ,tj+1)(t), ej ∈ Ftj .
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For an elementary function φ we define I(φ) as

I(φ) =
∑
j

ej
(
Wtj+1∧T −Wtj∧T

)
:=
∑
j

ej∆Wtj .

In order to proceed, we need to briefly introduce a conditional expectation and martingales.

Definition 5.0.3 (Conditional Expectations). Let (Ω,F ,P) be a probability
space and X : Ω→ Rd be a random variable such that E[|X|] <∞. If H ⊂ F is
a σ-algebra, then the conditional expectation ofX givenH, denoted by E[X|H],
is a random variable such that

1. E[X|H] is H-measurable.

2. E[X,A] = E[E[X|H], A] for any A ∈ H.

Conditional expectation exists and it is unique a.e. (any two are equal a.e.).
Intuitively, the conditional expectation E[X|H] is the best guess of X given
information H.

Properties of Conditional Expectations

1. X → E[X|H] is linear.

2. Let H1 ⊂ H2. Then, E[E[X|H2]|H1] = E[X|H1] (Towering property).

3. If X ∈ H, then E[XY |H] = XE[Y |H].

4. Convergence Theorems for Conditional Expectations

(a) Monotone Convergence Theorem
If 0 ≤ Xn ≤ X and Xn ↑ X, then E[Xn|H] ↑ E[X|H].

(b) Fatou Theorem
Let 0 ≤ Xn. Then, E[lim inf

n→∞
Xn|H] ≤ lim inf

n→∞
E[Xn|H].

(c) Dominated Convergence Theorem
Suppose that Xn → X and |Xn| ≤ Z with E[Z] < ∞. Then, lim

n→∞
E[Xn|H] =

E[X|H].

5. Jensen’s Inequality for Conditional Expectation
Let φ be convex and E[|X|],E[|φ(X)|] <∞. Then, φ(E[X|H]) ≤ E[φ(X)|H].
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Definition 5.0.4 (Martingales). Let {Ft} be a filtration (collection of increasing
σ-algebras). A stochastic process X = {Xt} is called a martingale if

1. E[|Xt|] <∞ for each t > 0;

2. Xt is Ft adapted (Xt is Ft measurable);

3. for any s < t E[Xt|Fs] = Xs.

Proposition 5.0.5 (Itô Isometry). Suppose that φ is bounded and elementary.
Then, we have

E[I(φ)2] = E[

∫ T

0

φ(t, ω)2dt].

Proof. Note that

φ(t, ω)2 =
∑
j

ej(ω)21[tj ,tj+1)(t) and E[

∫ T

0

φ(t, ω)2dt] =
∑
j

E[e2
j ](tj+1 ∧ T − tj ∧ T ).

Also, we have

I(φ)2 =

(∑
j

ej∆Wtj

)2

=
∑
j

e2
j∆W

2
tj

+
∑
j 6=k

ejek∆Wtj∆Wtk .

Hence, the proof will be completed if one can show that

E[ejek∆Wtj∆Wtk ] = 0, j 6= k,

and
E[e2

j∆W
2
tj

] = E[e2
j ](tj+1 ∧ T − tj ∧ T ),

Using the conditional expectation argument we have for j < k

E[ejek∆Wtj∆Wtk ]

=E
[
E[ejek∆Wtj∆Wtk |Ftj ]

]
=E

[
ejek∆WtjE[∆Wtk |Ftj ]

]
=0.

Similarly, we have

E[e2
j∆W

2
tj

]

=E[E[e2
j∆W

2
tj
|Ftj ]]

=E[e2
jE[
(
Wtj+1∧T −Wtj∧T

)2 |Ftj ]]
=E[e2

j ](tj+1 ∧ T − tj ∧ T ).

�
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Now, we are ready to define the Itô integral I(f) for f ∈ V (T ).

Theorem 5.0.6. For f ∈ V (T ), one can define

I(f) =

∫ T

0

f(t, ω)dWt

as L2-limit of I(φn), where E[

∫ T

0

(f(t, ω)−φn(t, ω))2dt]→ 0. The Itô integral I(f)

satisfies

(1)
∫ T

0

f(t, ω)dWt ∈ FT .

(2) E[

∫ T

0

f(t, ω)dWt] = 0.

(3) E[(

∫ T

0

f(t, ω)dWt)
2] = E[

∫ T

0

f(t, ω)2dt].

(4)
∫ S

0

f(t, ω)dWt +

∫ T

S

f(t, ω)dWt =

∫ T

0

f(t, ω)dWt.

(5)
∫ T

0

af(t, ω) + bg(t, ω)dWt = a

∫ T

0

f(t, ω)dWt + b

∫ T

0

g(t, ω)dWt.

Proof. One of standard ingredients we need is that the elementary functions are dense in
V = V (T ), which is a standard technique in measure theory. Once, this is established, for f ∈ V
we take a sequence of elementary functions {φn} converging to f . Note that

E[

(∫ T

0

φn(t, ω)dWt −
∫ T

0

φm(t, ω)dWt

)2

] = E[

∫ T

0

(φn(t, ω)− φm(t, ω))2dt],

which shows that I(φn) is Cauchy in L2(P), hence it converges in L2(P). Hence, we can define
I(f) as the L2(P) limit. It is easy to observe that the limit is independent of the approximating
sequence φn.
The rest are easy as they holds for elementary functions and the same must hold in the limit. �

Furthermore, one can choose the Itô integral so that t → I(f)(t, ω) is continuous a.s. More
precisely, we have

Theorem 5.0.7. For any T > 0, the map

t→
∫ t

0

f(s, ω)dWs

is continuous almost surely for t ∈ [0, T ].
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Proof. Two main ingredient for the proof is the Doob’s maximal inequality for martingales

P(sup
t≤T
|Mt| ≥ λ) ≤ 1

λp
E[|MT |p], p ∈ [1,∞),

and Borel-Cantelli Lemma.
Let f ∈ V and choose an approximating sequence {φn} of elementary functions converging to f
in L2([0, T ]⊗ P). Let

In(t, ω) =

∫ t

0

φn(s, ω)dWs.

Then, it is easy to observe that t→ In(t, ω) is a martingale with respect to Ft: for s ≤ t

E[In(t, ω)|Fs] = In(s, ω) a.s.

By the Doob’s maximal inequality, we have

P
(

sup
t≤T
|In(t, ω)− Im(t, ω)| > ε

)
≤ 1

ε2
E[|In(T, ω)− Im(T, ω)|2].

The right-hand side converges to zero as n,m → ∞ and one can choose a subsequence {nk}
such that

P
(

sup
t≤T

∣∣Ink+1
(t, ω)− Ink(t, ω)

∣∣ > 2−k
)
≤ 2−k.

Hence, by Borel-Cantelli Lemma we have

P
(

lim sup
k
{sup
t≤T

∣∣Ink+1
(t, ω)− Ink(t, ω)

∣∣ > 2−k}
)

= 0,

and there exists Ω
′ ⊂ Ω with P(Ω

′
) = 1 such that for each ω ∈ Ω

′ there exists k1 = k1(ω) such
that for all k ≥ k1 we have

sup
t≤T

∣∣Ink+1
(t, ω)− Ink(t, ω)

∣∣ ≤ 2−k.

Hence, Ink(t, ω) converges uniformly for all t ≤ T and the limit is continuous. Since L2-limit is
unique a.s., this establishes the claim. �

5.1 Exercises

(1) The purpose of this exercise is to justify the approximation argument in the proof of Theorem
5.0.6.

(a) Let g ∈ V be bounded and g(·, ω) is continuous for each ω. Then there exist elementary
functions φn such that

E[

∫ T

0

(g − φn)2dt]→ 0 as n→∞.
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Solution. Let φn(t, ω) =
n∑
j=1

g(t
(n)
j , ω) · 1

[t
(n)
j ,t

(n)
j+1)

, where t
(n)
j =

Tj

n
. Since · →

g(·, ω) is continuous, φn(t, ω)→ g(t, ω) as n→∞ and the claim follows from
the bounded convergence theorem. �

(b) Let h ∈ V be bounded. Then there exist bounded functions gn ∈ V such that · →
gn(·, ω) is continuous and

E[

∫ T

0

(h− gn)2dt]→ 0 as n→∞.

Solution. Let gn = ψn ? h, where ψn is an approximation to the identity.

Then, gn is smooth in t and
∫ T

0

(gn(s, ω) − h(s, ω))2ds → 0. Now the claim

follows from the bounded convergence theorem. �

(c) Let f ∈ V . Then there exists a sequence hn ∈ V such that hn is bounded and

E[

∫ T

0

(f − hn)2dt]→ 0 as n→∞.

Solution. Let hn = f · 1{|f |≤n}. �
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Chapter 6

Itô Theorem

In this section, we prove the celebrated Itô Formula.

Definition 6.0.1. We say X = {X}t is a Itô process if it can be written as

Xt = X0 +

∫ t

0

u(s, ω)ds+

∫ t

0

v(s, ω)dWs,

where P
(∫ t

0

|u(s, ω)| ds <∞ for all t ≥ 0

)
= P

(∫ t

0

|v(s, ω)|2 ds <∞ for all t ≥ 0

)
=

1.

We will write it as
dXt = udt+ vdWt.

Let g = g(t, x) ∈ C2([0,∞)×R) and Yt = g(t,Xt). Here is the statement for the main theorem.

Theorem 6.0.2. Let X be an Itô process given by dXt = udt + vdWt and Yt =
g(t,Xt) for g ∈ C2. Then, we have

dYt =
∂g

∂t
(t,Xt)dt+

∂g

∂x
(t,Xt)dXt +

1

2

∂2g

∂x2
(t,Xt) · (dXt)

2,

where (dXt)
2 is computed according to the rules

dt · dt = dt · dWt = 0, dWt · dWt = dt.

Before we proceed any further, we illustrate some examples that use the Itô Theorem.

Examples 6.0.3. (1)
∫ t

0

WsdWs =
1

2
W 2
t −

t

2
.

Let Xt = Wt and Yt = f(Xt) :=
1

2
W 2
t . Then, by the Itô Theorem

dYt =
df

dx
(Yt)dXt +

1

2

d2f

dx2
(Yt)(dXt)

2 = WtdWt +
1

2
dt,
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or
Yt − Y0 =

∫ t

0

WsdWs +

∫ t

0

1

2
ds =

∫ t

0

WsdWs +
t

2
.

Hence, ∫ t

0

WsdWs =
1

2
W 2
t −

t

2
.

(2)
∫ t

0

sdWs = tWt −
∫ t

0

Wsds.

Let Xt = Wt and Yt = f(t,Xt) := tWt. Then, by the Itô Theorem

dYt =
∂f

∂t
(t,Xt)dt+

∂f

∂x
(t,Xt)dXt +

1

2

∂2f

∂x2
(dXt)

2 = Wtdt+ tdWt,

or
tWt − 0W0 =

∫ t

0

Wsds+

∫ t

0

sdWs →
∫ t

0

sdWs = tWt −
∫ t

0

Wsds.

We define a quadratic variation process of W by

〈W,W 〉(t) := lim
∆tk→0

∣∣Wtk+1
−Wtk

∣∣2 ,
where the convergence is convergence in probability. Recall that ∆Wtk = Wtk+1

−Wtk .

Lemma 6.0.4. Let 0 ≤ t1 < t2 < · · · tn ≤ t be a partition of time interval [0, t].
Then we have

E

(∑
k

(∆Wtk)
2 − t

)2
 = 2

∑
k

(∆tk)
2.

Hence,
〈W,W 〉(t)→ t in L2(Ω).

Proof. First note that ∑
k

(∆Wtk)
2 − t =

∑
k

(
(∆Wtk)

2 −∆tk
)
.

Hence, (∑
k

(∆Wtk)
2 − t

)2

=

(∑
k

(
(∆Wtk)

2 −∆tk
))2

=
∑
k

(
(∆Wtk)

2 −∆tk
)2

+ 2
∑
k<j

((∆Wtk)
2 −∆tk)((∆Wtj)

2 −∆tj)

=
∑
k

[
(∆Wtk)

4 − 2∆tk(∆Wtk)
2 + (∆tk)

2
]

+ 2
∑
k<j

((∆Wtk)
2 −∆tk)((∆Wtj)

2 −∆tj).
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Hence it follows from independence of increments and facts that E[W 2
t ] = t and E[W 4

t ] = 3t2

E
[
(∆Wtk)

4 − 2∆tk(∆Wtk)
2 + (∆tk)

2
]

= 3(∆tk)
2 − 2(∆tk)

2 + (∆tk)
2 = 2(∆tk)

2

For k < j, it follows from a conditioning argument

E[((∆Wtk)
2 −∆tk)((∆Wtj)

2 −∆tj)]

=E
[
E[((∆Wtk)

2 −∆tk)((∆Wtj)
2 −∆tj)|Ftj ]

]
=E

[
((∆Wtk)

2 −∆tk)E[((∆Wtj)
2 −∆tj)|Ftj ]

]
=0.

This establishes the claim. �

Proof of Theorem 6.0.2 By an approximation argument, we may assume all functions are
bounded. The proof uses the Taylor theorem up to the second order term and a crucial ingredient
of the theorem is the quadratic variation of Brownian motions. Note that

Yt − Y0 =
∑
j

∆Ytj =
∑
j

∆g(tj, Xtj)

=
∑
j

∂g

∂t
(tj, Xtj)∆tj +

∑
j

∂g

∂x
(tj, Xtj)∆Xtj

+
1

2

∑
j

∂2g

∂t2
(tj, Xtj)(∆tj)

2 +
∑
j

∂2g

∂t∂x
(tj, Xtj)∆tj∆Xtj +

1

2

∑
j

∂2g

∂x2
(tj, Xtj)(∆Xtj)

2 +
∑
j

Rj,

where Rj = o(|∆tj|2 + |∆Xj|2).
It is easy to observe that∑

j

∂g

∂t
(tj, Xtj)∆tj →

∫ t

0

∂g

∂t
(s,Xs)ds,

∑
j

∂g

∂x
(tj, Xtj)∆Xtj →

∫ t

0

∂g

∂x
(s,Xs)dXs,

and ∑
j

∂2g

∂t2
(tj, Xtj)(∆tj)

2 and
∑
j

∂2g

∂t∂x
(tj, Xtj)∆tj∆Xtj → 0.

Note that∑
j

∂2g

∂x2
(∆Xtj)

2

=
∑
j

∂2g

∂x2
u(tj, ω)2(∆tj)

2 + 2
∑
j

∂2g

∂x2
u(tj, ω)v(tj, ω)∆tj∆Wtj +

∑
j

∂2g

∂x2
v(tj, ω)2(∆Wtj)

2

The first two expressions converges to 0 and by Lemma 6.0.4 we have

E

∣∣∣∣∣∑
j

∂2g

∂x2
v(tj, ω)2(∆Wtj)

2 −
∑
j

∂2g

∂x2
v(tj, ω)2∆tj

∣∣∣∣∣
2
→ 0
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and this shows that∑
j

∂2g

∂x2
v(tj, ω)2(∆Wtj)

2 →
∫ t

0

∂2g

∂x2
v(s, ω)2ds in L2(P).

Finally, we can observe that Rj → 0 by a similar argument and this establishes the claim. �
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Part V

Stochastic Differential Equations

37





Chapter 7

Examples-Geometric Brownian
Motions and OU Processes

In this chapter, we explain two examples that are solutions of SDEs; Geometric Brownian motions
and Ornstein-Uhlenbeck Processes.
Examples 7.0.1 (Geometric Brownian Motions). Consider a population growth
model and let N = {Nt}, where Nt is a number of certain population. Assume that
it satisfies the following equation:

dNt = aNtdt+ αNtdWt.

(1) Find Nt. Note that
dNt

Nt

= adt+ αdWt and we have∫ t

0

dNs

Ns

= at+ αWt.

We will find
dNt

Nt

using the Itô formula. Let f(x) = ln x and by the Itô formula we
have

d(lnNt) =
dNt

Nt

+
1

2
(− 1

N2
t

)(dNt)
2 =

dNt

Nt

− 1

2N2
t

α2N2
t =

dNt

Nt

− 1

2
α2dt.

Hence, d(lnNt) =
dNt

Nt

− 1

2
α2dt and we have∫ t

0

dNs

Ns

=

∫ t

0

d(lnNs) +
1

2
α2ds = ln

Nt

N0

+
1

2
α2t = at+ αWt,

and we have
Nt = N0 exp

(
(a− 1

2
α2)t+ αWt

)
.

(2) Assume that the initial population N0 and W = {Wt} are independent. Show
that

E[Nt] = E[N0]eat.
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That is, the expected population is the same as the case without the noise term.
By the independence we have

E[Nt] = E[N0]E[exp

(
(a− 1

2
α2)t+ αWt

)
].

We focus on finding E[eαWt ]. Let Yt = eαWt. Then, by the Itô formula, we have

dYt = αYtdWt +
1

2
α2Ytdt,

and

Yt =

∫ t

0

αYsdWs +
1

2
α2

∫ t

0

Ysds.

By taking an expectation and using the fact E[

∫ t

0

αYsdWs] = 0 as it is a martin-

gale, we have

E[Yt] =
α2

2

∫ t

0

E[Ys]ds,

and
d

dt
E[Yt] =

α2

2
E[Yt].

Hence, we have E[Yt] = e
1
2
α2t.

Examples 7.0.2 (Ornstein-Uhlenbeck Processes). Consider the following Ornstein-
Uhlenbeck equation (or Langevin equation), which models Brownian particles under
the influence of friction

dXt = µXtdt+ σdWt, µ, σ ∈ R.

(1) Using the variation of parameter Yt = e−µtXt, find the solution Xt.

By the stochastic chain rule d(AtBt) = d(At)Bt + Atd(Bt) + dAt · dBt, we have

dYt = −µe−µtXtdt+ e−µtdXt = e−µtσdWt.

Hence, we have Yt − Y0 =

∫ t

0

e−µsσdWs and this gives

Xt = eµtX0 + σ

∫ t

0

eµ(t−s)dWs.

(2) Find E[Xt] and Cov(Xt, Xs).
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Clearly, E[Xt] = eµtE[X0] and by the Itô isometry we have

Cov(Xt, Xs) = E [(Xt − E[Xt])(Xs − E[Xs])]

=E
[
σ

∫ t

0

eµ(t−u)dWu · σ
∫ s

0

eµ(s−u)dWu

]
=σ2eµ(t+s)E

[∫ ∞
0

1(0,t)(u)e−µudWu

∫ ∞
0

1(0,s)(u)e−µudWu

]
=σ2eµ(t+s)

∫ t∧s

0

e−2µudu = σ2eµ(t+s) 1− e−2µ(t∧s)

2µ
=
σ2

2µ
(eµ(t+s) − eµ|t−s|).
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Chapter 8

Existence and Uniqueness Theorem
of SDE

In this note, we prove the uniqueness and existence of the stochastic differential equations (SDE).

Theorem 8.0.1. Let T > 0 and b(·, ·) : [0, T ]×Rd → Rd, σ(·, ·) : [0, T ]×Rd → Rd×m

be measurable functions satisfying

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|),

and
|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y|

for some constants C andD. Let Z be a random variable which is independent
of the σ-algebras generated by B and such that

E[|Z|2] <∞.

Then the stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, 0 ≤ t ≤ T,X0 = Z

has a unique t-continuous solution such that X is adapted to the filtration

generated by Z and B and E[

∫ T

0

|Xt|2dt] <∞.

Remark 8.0.2. The matrix form of the SDE dXt = b(t,Xt)dt+ σ(t,Xt)dBt is given by

dX
(1)
t
...

dX
(d)
t

 =

b
(1)(t,Xt)

...
b(d)(t,Xt)

 dt+

σ11(t,Xt) · · · σ1m(t,Xt)
... . . . ...

σd1(t,Xt) · · · σdm(t,Xt)


dB

(1)
t
...

dB
(m)
t

 .
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Alternatively, we can write the SDE as

X
(j)
t −X

(j)
0 =

∫ t

0

b(j)(s,Xs)ds+
m∑
k=1

∫ t

0

σjk(s,Xs)dB
(k)
s , j ∈ {1, · · · , d}.

We need the following Gronwall’s Lemma for the proof of Theorem 8.0.1.

Lemma 8.0.3. Let u(t), κ(t) ≥ 0 be such that u(t) ≤ A +

∫ t

0

u(a)κ(a)da for 0 ≤ t ≤ T

for some constant A. Then,

u(t) ≤ A exp(

∫ t

0

κ(a)da) for 0 ≤ t ≤ T.

Proof. Note that we have u(s)κ(s)

A+
∫ s

0
κ(a)u(a)da

≤ κ(s) for 0 ≤ s ≤ t. This implies d

ds
ln

(
A+

∫ s

0

κ(a)u(a)da

)
≤

κ(s). By integrating from 0 to t, we have ln(A+

∫ t

0

κ(a)u(a))da− lnA ≤
∫ t

0

κ(a)da and this
implies

A+

∫ t

0

κ(a)u(a)da ≤ A exp(

∫ t

0

κ(a)da).

Finally,

u(t) ≤ A+

∫ t

0

κ(a)u(a)da ≤ A exp(

∫ t

0

κ(a)da).

�

Proof of Theorem 8.0.1 Uniqueness The main tool to prove the uniqueness is the Gronwall’s
lemma. Let Xt and X̃t be two solutions of the following SDEs

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, X0 = Y0, t ∈ [0, T ],

and
dX̃t = b(t, X̃t)dt+ σ(t, X̃t)dBt, X̃0 = Ỹ0, t ∈ [0, T ],

Using a simple inequality (x+ y + z)2 ≤ 3(x2 + y2 + z2) we have

E[|Xt − X̃t|2]

=E

[(
(Y0 − Ỹ0) +

∫ t

0

(b(s,Xs)− b(s, X̃s))ds+

∫ t

0

(σ(s,Xs)− σ(s, X̃s))dBs

)2
]

≤3

(
E[(Y0 − Ỹ0)2] + (

∫ t

0

(b(s,Xs)− b(s, X̃s))ds)
2 + (

∫ t

0

(σ(s,Xs)− σ(s, X̃s))dBs)
2

)
.

44



By Cauchy-Schwarz inequality and the condition on b, we have

(

∫ t

0

(b(s,Xs)− b(s, X̃s))ds)
2

≤
∫ t

0

1ds ·
∫ t

0

(b(s,Xs)− b(s, X̃s))
2ds

≤tD2

∫ t

0

|Xs − X̃s|2ds.

By Itô isometry and the condition on b, we have

E[(

∫ t

0

(σ(s,Xs)− σ(s, X̃s))dBs)
2]

=E[

∫ t

0

(σ(s,Xs)− σ(s, X̃s))
2ds]

≤D2E[

∫ t

0

|Xs − X̃s|2].

Hence, we conclude that

E[|Xt − X̃t|2] ≤ 3E[(Y0 − Ỹ0)2] + 3D2(1 + T )E[

∫ t

0

|Xs − X̃s|2].

By Gronwall’s lemma we conclude that

E[|Xt − X̃t|2] ≤ 3E[(Y0 − Ỹ0)2] exp(3D2(1 + T )t), t ∈ [0, T ].

As Y0 = Ỹ0 = Z, we conclude that E[|Xt − X̃t|2] = 0 for all t ∈ [0, T ] and Xt = X̃t a.e. for all
t ∈ [0, T ]. Hence, there is Ω′ ⊂ Ω with P(Ω′) = 1 such that

Xt(ω) = X̃t(ω) for all t ∈ [0, T ] ∩Q and ω ∈ Ω′.

From the continuity, we conclude that

Xt(ω) = X̃t(ω) for all t ∈ [0, T ] and ω ∈ Ω′.

Existence and Continuity
We define Y (n)

t inductively as
Y

(0)
t = X0,

and
Y

(n+1)
t = X0 +

∫ t

0

b(s, Y (n)
s )ds+

∫ t

0

σ(s, Y (n)
s )dBs.

By a similar calculation as above, we have

E[|Y (n+1)
t − Y (n)

t |2] ≤ 3D2(1 + t)E[

∫ t

0

|Y (n)
s − Y (n−1)

s |2ds] (8.1)
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We also have

E[|Y (1)
t − Y (0)

t |2]

=E[

(∫ t

0

b(s,X0)ds+

∫ t

0

σ(s,X0)dBs

)2

]

≤2E
[
(

∫ t

0

b(s,X0)ds)2 + (

∫ t

0

σ(s,X0)dBs)
2

]
≤2tE[

∫ t

0

b(s,X0)2ds] + 2E[

∫ t

0

σ(s,X0)2ds]

≤2t(1 + t)C2E[(1 +X0)2]. (8.2)

From (8.1) and (8.2) we conclude that

E[|Y (n+1)
t − Y (n)

t |2] ≤ cn+1tn+1

(n+ 1)!
.

This shows that Y (n)
t is uniformly Caychy in L2(Ω) and it converges uniformly to Xt, t ∈ [0, T ].

As all Y (n)
t are continuous, this shows that Xt is continuous as a uniform limit of continuous

functions.
Finally, note that by Cauchy-Schwarz inequality we have

E

[(∫ t

0

b(s, Y (n)
s )− b(s,Xs)ds

)2
]

≤E[t

∫ t

0

(b(s, Y (n)
s )− b(s,Xs))

2ds]

≤tD2E[

∫ t

0

|Y (n)
s −Xs|2ds]→ 0 as n→∞.

by a uniform convergence theorem. By a similar argument with Itô isometry, we also have

E

[(∫ t

0

σ(s, Y (n)
s )− σ(s,Xs)dBs

)2
]
→ 0 as n→∞.

Hence, by taking a limit to

Y
(n+1)
t = X0 +

∫ t

0

b(s, Y (n)
s )ds+

∫ t

0

σ(s, Y (n)
s )dBs,

we conclude that Xt satisfies the SDE.
�
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