Brownian Motions, Itô Calculus, and SDE

Hyunchul Park, SUNY New Paltz

May 1, 2022

Contents

Ι	Introduction	1
II	Warming Up - What Can One Prove in Analysis using Probability?	3
1	Stone-Weierstrass Theorem	5
II	I Construction of Brownian Motions	7
2	L^1 -method; Broken Line Approximation 2.1 Observation on the Sample Paths of Brownian Motions 2.2 Reconstruction of Sample Paths using Broken-Line Approximation	
3	L^2 -method; Gaussian White Noise	15
4	Probabilistic Solution to Dirichlet Problem	21
17	Stochastic Integrals with respect to Brownian Motions	25
5	Stochastic Integral with respect to Brownian Motions 5.1 Exercises	27 31
6	Itô Theorem	33
V	Stochastic Differential Equations	37
7	Examples-Geometric Brownian Motions and OU Processes	39
8	Existence and Uniqueness Theorem of SDE	43
V.	I Bibliograph y	47

Part I Introduction

Part II

Warming Up - What Can One Prove in Analysis using Probability?

Stone-Weierstrass Theorem

Probability is one branch of mathematics that studies *randomness*. It has close connections to other areas of mathematics and is very useful to solve problems in different areas of mathematics. As an illustration, we prove the Stone-Weierstrass theorem using binomial distributions and Chebyshev inequality.

Here is a statement of the theorem.

Theorem 1.0.1. Let f(x) be continuous on [0,1]. Then, for any $\epsilon > 0$ there exists a polynomial $B_n(x)$ such that

$$\sup_{x \in [0,1]} |f(x) - B_n(x)| < \epsilon.$$

Proof. Let X_i be iid Bernoulli random variables with $\mathbb{P}(X_i=1)=p\in(0,1)$ and $S_n=X_1+\cdots X_n$. Note that the distribution of S_n is a binomial distribution with parameters n and p. We define

$$B_n(p) := \mathbb{E}[f(\frac{S_n}{n})] = \sum_{k=0}^n f(\frac{k}{n}) \binom{n}{k} p^k (1-p)^{n-k}.$$

Since f(x) is uniformly continuous on [0,1], for given $\epsilon>0$ there exists a $\delta=\delta(\epsilon)>0$ such that

$$|f(x) - f(y)| < \epsilon \text{ if } |x - y| < \delta.$$

Let $K = \sup_{x \in [0,1]} |f(x)| < \infty$. Then, we have

$$|B_n(p) - f(p)| = \left| \mathbb{E}[f(\frac{S_n}{n})] - f(p) \right|$$

$$\leq \mathbb{E}[\left| f(\frac{S_n}{n}) - f(p) \right|]$$

$$\leq \mathbb{E}[\left| f(\frac{S_n}{n}) - f(p) \right|, \left| \frac{S_n}{n} - p \right| < \delta] + \mathbb{E}[\left| f(\frac{S_n}{n}) - f(p) \right|, \left| \frac{S_n}{n} - p \right| \geq \delta].$$

Note that

$$\mathbb{E}\left[\left|f(\frac{S_n}{n}) - f(p)\right|, \left|\frac{S_n}{n} - p\right| < \delta\right] \le \epsilon \mathbb{P}\left(\left|\frac{S_n}{n} - p\right| < \delta\right) \le \epsilon.$$

By the Chebyshev inequality and the fact that $\operatorname{Var}(S_n) = \frac{n\operatorname{Var}(X_1)}{n^2} = \frac{p(1-p)}{n} \leq \frac{1}{4n}$, we have

$$\mathbb{E}[\left|f(\frac{S_n}{n}) - f(p)\right|, |\frac{S_n}{n} - p| \geq \delta] \leq 2K\mathbb{P}(|\frac{S_n}{n} - p| \geq \delta) \leq \frac{2K}{\delta^2} \mathrm{Var}(\frac{S_n}{n}) \leq \frac{K}{2n\delta^2}.$$

Now take n large so that $\frac{K}{2n\delta^2}<\epsilon$ and we obtain

$$\sup_{p \in [0,1]} |B_n(p) - f(p)| < 2\epsilon.$$

Part III Construction of Brownian Motions

L^1 -method; Broken Line Approximation

A *Brownian motion* or *Wiener process* is a stochastic process that satisfies the following conditions:

- (1) $B_0 = 0$ a.s.;
- (2) the increments $B_t B_s$ have N(0, t s) distribution for all $0 \le s \le t$;
- (3) the increments $B_{t_2}-B_{t_1}$ and $B_{t_4}-B_{t_3}$ are independent whenever $0 \le t_1 \le t_2 \le t_3 \le t_4$;
- (4) the trajectories $t \to B_t$ are a.s. continuous.

The first question we must answer is if there exist such processes?

2.1 Observation on the Sample Paths of Brownian Motions

We start with a simple observation on the sample path of Brownian motions. Let $B = \{B_t\}_{t\geq 0}$ be a Brownian motions. Then, for each t>0 we have

$$\begin{cases}
B_t = B_{t/2} + (B_t - B_{t/2}) = B_{t/2} + \tilde{B}_{t/2}, \\
B_{t/2} = \frac{1}{2}B_t + \frac{1}{2}(B_{t/2} - \tilde{B}_{t/2}),
\end{cases}$$

where $\tilde{B}_t = B_t - B_{t/2}$. Hence, B_t is a sum of independent normal random variables with variance $\frac{t}{2}$, and $B_{t/2}$ is a sum of $\frac{1}{2}B_t$ and $\frac{1}{2}(B_{t/2} - \tilde{B}_{t/2})$, which is independent of $B_{t/2} + \tilde{B}_{t/2}$ as one can see from the following simple fact.

Lemma 2.1.1. Let X and Y are independent normal distributions with parameters 0 and σ^2 . Then, X+Y and X-Y are independent $N(0,2\sigma^2)$ distributions.

Proof. Note that

$$\mathbb{E}[e^{i\xi X}] = \mathbb{E}[e^{i\xi Y}] = e^{-\frac{\sigma^2|\xi|^2}{2}}.$$

Hence, we have

$$\mathbb{E}[e^{i\xi_1(X+Y)}e^{i\xi_2(X-Y)}] = \mathbb{E}[e^{i(\xi_1+\xi_2)X}e^{i(\xi_1-\xi_2)Y}] = e^{-\frac{\sigma^2(\xi_1+\xi_2)^2}{2}}e^{-\frac{\sigma^2(\xi_1-\xi_2)^2}{2}} = e^{-\sigma^2|\xi_1|^2}e^{-\sigma^2|\xi_2|^2}.$$

2.2 Reconstruction of Sample Paths using Broken-Line Approximation

Now let $(\Omega,\mathcal{F},\mathbb{P})$ be a probability space with independent normal distributions Y_0 and Y_n^k , $n\in\mathbb{N}$, $k\in\{1,2,\cdots,2^{n-1}\}$ with $\mathrm{Var}(Y_n^k)=\frac{1}{2^{n+1}}$

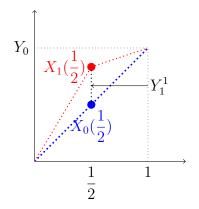
(1) We define $X_0(t)$, $t \in [0,1]$ as

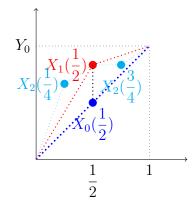
$$X_0(t) = tY_0.$$



(2) We define $X_1(t)$ as

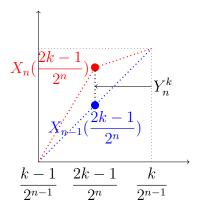
$$\begin{cases} X_1(0) = 0, \\ X_1(1) = X_0(1) = Y_0, \\ X_1(\frac{1}{2}) = \frac{1}{2}Y_0 + Y_1^1 = X_0(\frac{1}{2}) + Y_1^1, \\ X_1(t) \text{ is linear between these points.} \end{cases}$$





(3) In general, we repeat the process as follows:

$$\begin{cases} X_n(0) = 0, \\ X_n(1) = Y_0, \\ X_n(\frac{2k-1}{2^n}) = X_{n-1}(\frac{2k-1}{2^n}) + Y_n^k, \\ X_n(t) \text{ is linear between these points.} \end{cases}$$



(4) Note that by the construction we have

$$X_n(\frac{2k-1}{2^n}) - X_n(\frac{2k-2}{2^n}) = \frac{1}{2} \left(X_{n-1}(\frac{k}{2^{n-1}}) - X_{n-1}(\frac{k-1}{2^{n-1}}) \right) + Y_n^k,$$

and

$$X_n\left(\frac{k}{2^{n-1}}\right) - X_n\left(\frac{2k-1}{2^n}\right) = \frac{1}{2}\left(X_{n-1}\left(\frac{k}{2^{n-1}}\right) - X_{n-1}\left(\frac{k-1}{2^{n-1}}\right)\right) - Y_n^k.$$

Note that the variance of the two expressions above are both $\frac{1}{4}\frac{1}{2^{n-1}}+\frac{1}{2^{n+1}}=\frac{1}{2^n}$ and the two are independent of each other from Lemma 2.1.1

(5) Note that

$$\sup_{t \in [0,1]} |X_n(t) - X_{n-1}(t)| \le \max_{1 \le k \le 2^{n-1}} |X_n(\frac{k}{2^n}) - X_{n-1}(\frac{k}{2^n})|$$

$$= \max_{1 \le k \le 2^{n-1}} |Y_n^k| \le \left(\sum_{k=1}^{2^{n-1}} |Y_n^k|^4\right)^{1/4},$$

and by Jensen's inequality we have

$$\mathbb{E}\left[\sup_{t\in[0,1]}|X_n(t)-X_{n-1}(t)|\right] \le \mathbb{E}\left[\left(\sum_{k=1}^{2^{n-1}}|Y_n^k|^4\right)^{1/4}\right] \le \mathbb{E}\left[\sum_{k=1}^{2^{n-1}}|Y_n^k|^4\right]^{1/4} \\
\le (2^{n-1}c(\frac{1}{2^{n+1}})^2)^{1/4} = c^{1/4}2^{-\frac{n+3}{4}},$$

where we used the fact that $\mathbb{E}[N^{2n}] = c_n \sigma^{2n}$ for $N \sim N(0, \sigma^2)$ and some constant c_n . This implies that

$$\sum_{n=1}^{\infty} \mathbb{E}[\sup_{t \in [0,1]} |X_n(t) - X_{n-1}(t)|] < \infty.$$

This shows the following.

Theorem 2.2.1. The processes $X_n(t)$ converge a.s. and in L^1 to a continuous process X(t) so that

$$\mathbb{E}[\sup_{t\in[0,1]}|X_n(t)-X(t)|]\to 0,\quad n\to\infty,$$

and also a.s.

$$\sup_{t \in [0,1]} |X_n(t) - X(t)| \to 0, \quad n \to \infty,$$

The limiting process X(t) *is a standard Brownian Motion on* [0,1]*.*

2.3 Exercises

- (1) Let X be a standard normal distribution.
 - (a) Show that the moment generating function is $M_X(\lambda) = \mathbb{E}[e^{\lambda X}] = e^{\frac{\lambda^2}{2}}$ for all $\lambda \in \mathbb{R}$.
 - (b) Show that

$$\mathbb{E}[X^{2n+1}] = 0, \quad \mathbb{E}[X^{2n}] = \frac{(2n)!}{2^n n!}, n \in \mathbb{N}.$$

- (2) Prove Theorem 2.2.1 as follows:
 - (a) Show that $\{X_n(t)\}$ is uniformly Cauchy in $L^1(\Omega, \mathbb{P})$, that is, for any $\epsilon > 0$ there exists $N = N(\epsilon)$ such that

$$\mathbb{E}[|X_n(t) - X_m(t)|] < \epsilon \text{ for all } n, m \geq N \text{ and } t \in [0, 1].$$

Hence, $X_t = \lim_{n \to \infty} X_n(t)$ exists in $L^1(\Omega, \mathbb{P})$ and $\lim_{n \to \infty} \mathbb{E}[\sup_{t \in [0,1]} |X_n(t) - X(t)|] = 0$.

(b) Let N be a standard normal random variable. Then, for any constant A>0 we have

$$\mathbb{P}(|N| \ge A) \le e^{-\frac{A^2}{2}},$$

Solution.

$$\mathbb{P}(N \ge A) = \int_{A}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \int_{0}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x+A)^2}{2}} dx$$

$$= \int_{0}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \times e^{-\frac{2xA+A^2}{2}} dx$$

$$\leq \int_{0}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \times e^{-\frac{A^2}{2}} dx = \frac{1}{2} \times e^{-\frac{A^2}{2}}.$$

(c) Use Borel-Cantelli Lemma to show that for a.e. $\omega \in \Omega$ there exists $N = N(\omega)$ such that

$$|Y_n^k| \le \sqrt{n}2^{-\frac{n+1}{2}}$$
 for all $n \ge N(\omega)$.

Solution. Note that

$$\mathbb{P}(2^{\frac{n+1}{2}}|Y_n^k| \ge \sqrt{n}) \le e^{-\frac{n}{2}} \text{ for all } n \ge 1,$$

and by Borel-Cantelli Lemma the result follows.

(d) Show that $X_n(t)$ converges uniformly to X_t a.s. (Hence, $t \to X_t$ is continuous a.s.).

Solution. From the previous question, for a.e. ω there exists $N(\omega)$ such that for all $n \geq N$

$$\sup_{t \in [0,1]} |X_n(t) - X_{n-1}(t)| \leq \max_{1 \leq k \leq 2^{n-1}} |X_n(\frac{k}{2^n}) - X_{n-1}(\frac{k}{2^n})| \leq = \max_{1 \leq k \leq 2^{n-1}} |Y_n^k| \leq \sqrt{n} 2^{-\frac{n+1}{2}}.$$

(e) Show that $X_{t+s} - X_t$ is independent of $\sigma(X_u, u \leq t)$ and has N(0, s) distribution.

Solution. It is enough to show that

$$\mathbb{E}[e^{i\xi_1(X_{t+s}-X_t)}e^{i\xi_2X_u}] = e^{-\frac{\xi_1^2}{2}s}e^{-\frac{\xi_2^2}{2}u} \text{ for any } u \le t \text{ and } \xi_1, \xi_2 \in \mathbb{R}.$$

This is true if all t,s,u are dyadic integers. For a general case, take sequences of dyadic integers $\{t_n\},\{s_n\}$ and $\{u_n\}$ such that $\lim t_n=t, \lim s_n=s, \lim u_n=u$. By continuity, $\lim X_{t_n}=X_t$, $\lim X_{s_n}=X_s$, and $\lim X_{u_n}=X_u$ and it follows from the dominated convergence theorem

$$\mathbb{E}[e^{i\xi_1(X_{t+s}-X_t)}e^{i\xi_2X_u}] = \lim_{n \to \infty} \mathbb{E}[e^{i\xi_1(X_{t_n+s_n}-X_{t_n})}e^{i\xi_2X_{u_n}}]$$

$$= \lim_{n \to \infty} e^{-\frac{\xi_1^2}{2}s_n}e^{-\frac{\xi_2^2}{2}u_n} = e^{-\frac{\xi_1^2}{2}s}e^{-\frac{\xi_2^2}{2}u}.$$

L^2 -method; Gaussian White Noise

Now we turn our attention to constructing Brownian motions. We will construct the Gaussian white noise, which is an isometry from $L^2([0,1],dx)$ into a space of centered Gaussian distributions. Brownian motions $W=\{W_t\}_{t\geq 0}$ will be constructed as an image of $1_{[0,t]}(x)$ under this Gaussian white noise.

For every $t \in [0,1]$, we define *Haar functions*

$$h_0(t) = 1, \quad t \in [0, 1],$$

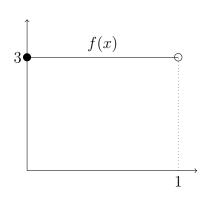
and

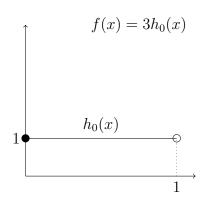
(1)

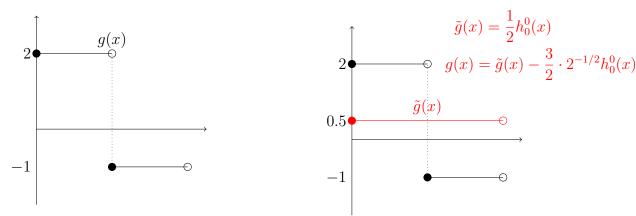
$$h_k^n(t) = 2^{n/2} \times \mathbf{1}_{\{[\frac{2k}{2n+1}, \frac{2k+1}{2n+1})\}}(t) - 2^{n/2} \times \mathbf{1}_{\{[\frac{2k+1}{2n+1}, \frac{2k+2}{2n+1})\}}(t),$$

where $n \in \{0, 1, 2, \dots\}$ and $k \in \{0, 1, 2, \dots, 2^n - 1\}$.

Show that $\{h_0,h_k^n\}$, $n\in\{0,1,2,\cdots\}$ and $k\in\{0,1,2,\cdots,2^n-1\}$ form an orthonormal basis for $L^2([0,1],\mathcal{B}[0,1],dt)$.







Proof. It is enough to show that for any step function f(x) which has constant values on intervals of the form $[\frac{k-1}{2^n},\frac{k}{2^n})$, $k\in\{1,2,\cdots,2^n\}$ can be represented as a linear combination of h_0 and h_k^j , $j\in\{0,1,2,\cdots,n-1\}$ since polynomials can be approximated by these step functions and by Stone-Weierstrass Theorem (Theorem 1.0.1) polynomials are dense in the space of continuous functions for uniform norm on [0,1].

We prove this using a mathematical induction. This is trivial when n=0. Suppose this holds for some n-1. Let f(x) be a step function whose values are constants on intervals of the form $[\frac{k-1}{2^{n+1}},\frac{k}{2^{n+1}})$, $k\in\{1,2,\cdots,2^{n+1}\}$. Define an ancestor $\tilde{f}(x)$ of f(x) whose values are constant on intervals of the form $[\frac{k-1}{2^n}\frac{k}{2^n})$ and the values are determined by the average of f(x). That is,

$$\tilde{f}(x) = \frac{f(\frac{2k-2}{2^{n+1}}) + f(\frac{2k-1}{2^{n+1}})}{2}, \quad x \in \left[\frac{k-1}{2^n} \frac{k}{2^n}\right).$$

By the induction hypothesis $\tilde{f}(x)$ can be represented as a linear combination of h_0 and h_k^j , $j \in \{0,1,2,\cdots,n-1\}$. Then, for each interval of the form $[\frac{2l-2}{2^{n+1}},\frac{2l}{2^{n+1}})$, let

$$\begin{split} &g_{l-1}^n(x)\\ &= \left(f(\frac{2l-2}{2^{n+1}})) - \tilde{f}(\frac{l-1}{2^n})\right) \frac{h_{l-1}^n(x)}{2^{n/2}}\\ &= \frac{1}{2} \left(f(\frac{2l-2}{2^{n+1}})) - f(\frac{2l-1}{2^n})\right) \frac{h_{l-1}^n(x)}{2^{n/2}}. \end{split}$$

Finally define

$$g(x) = \tilde{f}(x) + \sum_{l=1}^{2^n} g_{l-1}^n(x)$$

$$= \tilde{f}(x) + \sum_{l=1}^{2^n} \frac{1}{2} \left(f(\frac{2l-2}{2^{n+1}})) - f(\frac{2l-1}{2^n}) \right) \frac{h_{l-1}^n(x)}{2^{n/2}}.$$

Then it is easy to observe that

$$\begin{split} &g(\frac{2l-2}{2^{n+1}})\\ &= \quad \tilde{f}(\frac{l-1}{2^n}) + \frac{1}{2}\left(f(\frac{2l-2}{2^{n+1}})) - f(\frac{2l-1}{2^n})\right)\\ &= \quad \frac{1}{2}\left(f(\frac{2l-2}{2^{n+1}}) + f(\frac{2l-1}{2^{n+1}}\right) + \frac{1}{2}\left(f(\frac{2l-2}{2^{n+1}})) - f(\frac{2l-1}{2^n})\right)\\ &= \quad f(\frac{2l-2}{2^{n+1}}), \end{split}$$

and

$$\begin{split} g(\frac{2l-1}{2^{n+1}}) \\ &= \quad \tilde{f}(\frac{l-1}{2^n}) + \frac{1}{2} \left(f(\frac{2l-2}{2^{n+1}})) - f(\frac{2l-1}{2^n}) \right) \times (-1) \\ &= \quad \frac{1}{2} \left(f(\frac{2l-2}{2^{n+1}}) + f(\frac{2l-1}{2^{n+1}}) - \frac{1}{2} \left(f(\frac{2l-2}{2^{n+1}})) - f(\frac{2l-1}{2^n}) \right) \\ &= \quad f(\frac{2l-1}{2^{n+1}}). \end{split}$$

Hence g(x) = f(x) for all $x \in [0, 1]$.

Let (E,\mathcal{E}) be a measurable space, and let μ be a σ -finite measure on (E,\mathcal{E}) . A Gaussian white noise with intensity μ is an isometry G from $L^2(E,\mathcal{E},\mu)$ into a centered Gaussian space.

(2)

Suppose that \mathcal{N}_0 , \mathcal{N}_k^n , $n \in \{0,1,2,\cdots\}$ and $k \in \{0,1,2,\cdots,2^n-1\}$, are independent, standard random variables on some probability space $(\Omega,\mathcal{F},\mathbb{P})$. Show that there exists a Gaussian white noise such that

$$G(h_0) = \mathcal{N}_n$$
, and $G(h_k^n) = \mathcal{N}_k^n$.

Proof. For each $f \in L^2([0,1],dx)$ can be written uniquely as

$$f(x) = c_0 h_0 + \sum_{n=0}^{\infty} \sum_{k=0}^{2^n - 1} c_k^n h_k^n$$

with

$$||f||_2^2 = c_0^2 + \sum_{n=0}^{\infty} \sum_{k=0}^{2^n - 1} (c_k^n)^2 < \infty.$$

Let $G(f_m) = c_0 \mathcal{N}_0 + \sum_{n=0}^m \sum_{k=0}^{2^n-1} c_k^n \mathcal{N}_k^n$. Note that by independence of \mathcal{N} and \mathcal{N}_k^n

$$\mathbb{E}[(G(f_m) - G(f_l))^2] = \mathbb{E}\left[\sum_{n=m+1}^l \sum_{k=0}^{2^n - 1} (c_k^n)^2 (\mathcal{N}_k^n)^2\right] = \sum_{n=m+1}^l \sum_{k=0}^{2^n - 1} (c_k^n)^2 \to 0$$

as $m, l \to \infty$. Hence $G(f_m)$ is Cauchy in $L^2(\Omega, \mathcal{F}, \mathbb{P})$. We denote its limit by

$$G(f) = \lim_{m} G(f_m) = c_0 \mathcal{N}_0 + \sum_{n=0}^{\infty} \sum_{k=0}^{2^{n}-1} c_k^n \mathcal{N}_k^n.$$

Clearly this G has the desired property.

For each $t \in [0,1]$ set $B_t := G(1_{[0,t]})$. Show that

$$B_t = t\mathcal{N}_0 + \sum_{n=0}^{\infty} \left(\sum_{k=0}^{2^n - 1} g_k^n(t) \mathcal{N}_k^n \right),$$

where

$$g_k^n(t) = \int_0^t h_k^n(s) ds.$$

 $g_k^n(t)$ are called Schauder functions.

(3)

Proof. Write

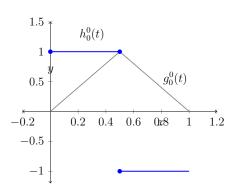
$$1_{[0,t]} = c_0 h_0 + \sum_{n=0}^{\infty} \sum_{k=0}^{2^n - 1} c_k^n h_k^n.$$

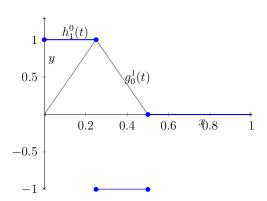
Then

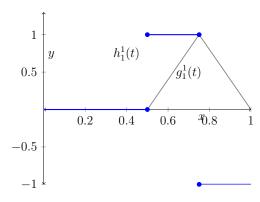
$$c_0 = \langle 1_{[0,t]}, h_0 \rangle = \int_0^1 1_{[0,t]}(s) ds = t,$$

and

$$c_k^n = \langle 1_{[0,t]}, h_k^n \rangle = \int_0^t h_k^n(s) ds.$$







(4) In this step, we show that B_t^m converges uniformly to B_t . A key ingredient is the following Borel-Cantelli lemma.

Lemma 3.0.1 (Borel-Cantelli lemma). Let A_n be events on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$. Then, $\mathbb{P}(\limsup_n A_n) = 0$.

Proof. From $\limsup_n A_n = \bigcap_{n=1}^\infty \bigcup_{m=n}^\infty A_m$, we have $\limsup_n A_n \subset \bigcup_{m=n}^\infty A_m$ for any $n \in \mathbb{N}$. Now the conclusion follows immediately from

$$\mathbb{P}(\limsup_{n} A_{n}) \leq \mathbb{P}(\bigcup_{m=n}^{\infty} A_{m}) \leq \sum_{m=n}^{\infty} \mathbb{P}(A_{m}) \to 0.$$

For each $m \ge 0$ and $t \in [0,1]$ define

$$B_t^m = t\mathcal{N}_0 + \sum_{n=0}^m \left(\sum_{k=0}^{2^n - 1} g_k^n(t) \mathcal{N}_k^n \right).$$

Show that B_t^m converges uniformly to B_t on [0,1] almost surely.

Proof. The key idea is to choose a clever choice of c_n with $c_n \to 0$ so that

$$\sum_{n} \mathbb{P}\left(\sum_{k=0}^{2^{n}-1} g_{k}^{n}(t) \mathcal{N}_{k}^{n} > c_{n}\right) < \infty,$$

and use Borel-Cantelli lemma.

First note that for the standard normal random variable $\mathcal N$ and $c \geq 1$ we have

$$\mathbb{P}(|\mathcal{N}| \ge c) = 2 \int_{c}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \le \sqrt{\frac{2}{\pi}} \int_{c}^{\infty} x e^{-\frac{x^2}{2}} dx = \sqrt{\frac{2}{\pi}} e^{-\frac{c^2}{2}}.$$

Note that supports of functions $g_k^n(t)$ are all disjoint and $|g_k^n(t)| \leq \frac{2^{n/2}}{2^n} = 2^{-\frac{n}{2}}$. Hence we have

$$\mathbb{P}\left(\sum_{k=0}^{2^{n}-1} g_{k}^{n}(t) \mathcal{N}_{k}^{n} > c_{n}\right) \leq \mathbb{P}\left(2^{-\frac{n}{2}} \sup_{0 \leq k \leq 2^{n}-1} \mathcal{N}_{k}^{n} > c_{n}\right)$$

$$= \mathbb{P}\left(\sup_{0 \leq k \leq 2^{n}-1} \mathcal{N}_{k}^{n} > 2^{\frac{n}{2}} c_{n}\right) \leq \sqrt{\frac{2}{\pi}} \exp\left(-\frac{c_{n}^{2} 2^{n}}{2}\right).$$

Now let $c_n = 2^{-\frac{n}{4}}$ so that $c_n \to 0$ and $\sum_n \exp(-\frac{c_n^2 2^n}{2}) = \sum_n \exp(-\frac{2^{n/2}}{2}) < \infty$.

Now it follows from Borel-Cantelli lemma we have

$$\mathbb{P}\left(\limsup\{\sum_{k=0}^{2^{n}-1}g_{k}^{n}(t)\mathcal{N}_{k}^{n}>2^{-\frac{n}{4}}\}\right)=0.$$

Hence for almost every $\omega \in \Omega$ there exists $N = N(\omega)$ such that

$$\sum_{k=0}^{2^{n}-1} g_k^n(t) \mathcal{N}_k^n \le 2^{-\frac{n}{4}}$$

for all $n \geq N(\omega)$. This shows that B_t^m converges uniformly for all $t \in [0,1]$.

Hence we can, for every $t\in[0,1]$, select a random variable B'_t which is a.s. equal to B_t , in such a way that the mapping $t\mapsto B'_t(\omega)$ is continuous for every $\omega\in\Omega$.

Proof. Since the uniform limit of continuous functions is continuous, B_t is continuous on Ω' with $\mathbb{P}(\Omega')=1$. Define

$$B_t'(\omega) = \begin{cases} B_t(\omega) & \text{if } \omega \in \Omega', \\ 0 & \text{if } \omega \notin \Omega'. \end{cases}$$

Probabilistic Solution to Dirichlet Problem

Let D be a domain in \mathbb{R}^d . We say a point $z \in \partial D$ is a *regular boundary point* if $\mathbb{P}_z(\tau_D = 0) = 1$. Let $(\partial D)_r$ be a collection of all regular boundary points. A domain D is called regular if $(\partial D)_r = \partial D$.

Theorem 4.0.1. For any domain (bounded or unbounded) D and any $f \in L^{\infty}(\partial D)$, the function $H_D f$ defined in \mathbb{R}^d by

$$H_D f(x) = \mathbb{E}_x[\tau_D < \infty, f(W_{\tau_D})]$$

is harmonic in D. If, in addition, $z \in (\partial D)_r$ and f is continuous at z, then

$$\lim_{x \to z, x \in D} H_D f(x) = f(z).$$

Before proving the theorem we need to recall some facts. If follows from [1, Theorem 1.17] we have

$$\sup_{x \in \mathbb{R}^d} \mathbb{E}_x[\tau_D] \le A_d |D|^{2/d}, \quad A_d = \frac{d+2}{2\pi d} (\frac{d+2}{2})^{2/d}. \tag{4.1}$$

In particular, if $|D| < \infty$, then $\mathbb{E}_x[au_D] < \infty$ a.s.

Lemma 4.0.2. Let $D \subset \mathbb{R}^d$ and B is an open ball with $\bar{B} \subset D$. Then, we have

- 1. $\tau_B + \tau_D \cdot \theta_{\tau_B} = \tau_D$.
- 2. $W_{\tau_D} \cdot \theta_{\tau_B} = W_{\tau_D}$.
- 3. Let $\Phi = 1_{\{\tau_D < \infty\}} f(W_{\tau_D})$. Then, $\Phi = \Phi \cdot \theta_{\tau_B}$.

Proof. First, it follows from (4.1) $\tau_B < \infty$ a.s. Note that for all such $\omega \in \Omega$ with $\tau_B(\omega) < \infty$

we have

$$\tau_D \cdot \theta_{\tau_B}(\omega)$$

$$= \inf\{t > 0 : X_t(\theta_{\tau_B}(\omega)) \notin D\}$$

$$= \inf\{t > 0 : \theta_{\tau_B}(\omega)(t) \notin D\}$$

$$= \inf\{t > 0 : \omega(\tau_B(\omega) + t) \notin D\}$$

$$= \tau_D(\omega) - \tau_B(\omega).$$

Second, note that for any stopping time we define $X_{\tau}(\omega) := X(\tau(\omega), \omega)$. Hence, we have

$$W_{\tau_D} \cdot \theta_{\tau_B}(\omega)$$

$$= X(\tau_D(\theta_{\tau_B}(\omega)), \theta_{\tau_B}(\omega))$$

$$= X(\tau_B(\omega) + \tau_D(\theta_{\tau_B}(\omega)), \omega)$$

$$= X(\tau_D(\omega), \omega)$$

$$= W_{\tau_D}(\omega),$$

where we used $\tau_B + \tau_D \cdot \theta_{\tau_B} = \tau_D$ in the middle.

Third, note that

$$\Phi \cdot \theta_{\tau_B}(\omega) = 1_{\{\tau_D < \infty\}}(\theta_{\tau_B}(\omega)) f(W_{\tau_D}(\theta_{\tau_B}(\omega))).$$

From the second, we have $W_{\tau_D}(\theta_{\tau_B}(\omega)) = W_{\tau_D}(\omega)$. Note that $1_{\{\tau_D < \infty\}}(\omega) = 1$ if and only if $\tau_D(\omega) < \infty$. Observe that $1_{\{\tau_D < \infty\}}(\theta_{\tau_B}(\omega)) = 1$ if and only if

$$\tau_D(\theta_{\tau_B}(\omega)) = \tau_D(\omega) - \tau_B(\omega) < \infty.$$

Since $\tau_B < \infty$ a.s., we conclude that $1_{\{\tau_D < \infty\}}(\theta_{\tau_B}(\omega)) = 1$ if and only if $\tau_D(\omega) < \infty$ a.s. \square

Proof of Theorem 4.0.1 We first prove that $H_Df(x)$ is harmonic in D by showing that it has a sphere averaging property. Let $x\in D$ and B=B(x,r) with $\bar{B}\subset D$. By Lemma 4.0.2 and the strong Markov property at τ_B we have

$$H_D f(x) = \mathbb{E}_x[\Phi] = \mathbb{E}_x[\Phi \cdot \theta_{\tau_B}]$$

$$= \mathbb{E}_x[\mathbb{E}_{X_{\tau_B}}[\Phi]]$$

$$= \int_{S(x,r)} \mathbb{E}_u[\Phi] \mathbb{P}_x(X_{\tau_{B(x,r)}} \in du)$$

$$= \frac{1}{\sigma(S(x,r))} \int_{S(x,r)} \mathbb{E}_u[\Phi] \sigma(du)$$

$$= \frac{1}{\sigma(S(x,r))} \int_{S(x,r)} H_D f(u) \sigma(du),$$

where we used the fact that the distribution of $\mathbb{P}_x(X_{\tau_{B(x,r)}} \in du)$ is a uniform measure on S(x,r). Now fix $z \in (\partial D)_r = \{w \in \mathbb{R}^d : \mathbb{P}_w(\tau_D = 0) = 1\}$. Given $\epsilon > 0$ take $\delta_1 = \delta_1(\epsilon)$ such that $|f(x) - f(z)| < \epsilon$ for all $|x - z| < \delta_1$. Note that

$$\mathbb{E}_{x}[\tau_{D} < \infty, |f(W_{\tau_{D}}) - f(z)|]
= \mathbb{E}_{x}[\tau_{D} < \infty, |f(W_{\tau_{D}}) - f(z)|, \tau_{B(z,\delta)} > \tau_{D}] + \mathbb{E}_{x}[\tau_{D} < \infty, |f(W_{\tau_{D}}) - f(z)|, \tau_{B(z,\delta)} \leq \tau_{D}]
\leq \epsilon + \mathbb{E}_{x}[\tau_{D} < \infty, |f(W_{\tau_{D}}) - f(z)|, \tau_{B(z,\delta)} \leq \tau_{D}],$$

where we used the fact on $\{\tau_{B(z,\delta)} > \tau_D\}$ $W_{\tau_D} \in B(z,r)$ and $|f(W_{\tau_D}) - f(z)| < \epsilon$. The second expression above can be bounded above by

$$\mathbb{E}_x[\tau_D < \infty, |f(W_{\tau_D}) - f(z)|, \tau_{B(z,\delta)} \le \tau_D] \le 2||f||_{\infty} \mathbb{P}_x(\tau_{B(z,\delta)} \le \tau_D).$$

The intuitive idea is that when x is near $z \in (\partial D)_r$, τ_D must be small and this makes the probability small. For $x \in B(z,\delta)$ we have $B(x,\delta/2) \subset B(z,\delta)$ and $\tau_{B(x,\delta/2)} \leq \tau_{B(z,\delta)}$. Hence, we have

$$\mathbb{P}_x(\tau_{B(z,\delta)} \le \tau_D) \le \mathbb{P}_x(\tau_{B(x,\delta/2)} \le \tau_D).$$

By the path continuity we have $\mathbb{P}_x(\tau_{B(x,\delta/2)}>0)=1$ or $\mathbb{P}_x(\tau_{B(x,\delta/2)}=0)=0$. Since $\lim_{n\to\infty}\mathbb{P}_x(\tau_{B(x,\delta/2)}\leq 1/n)=\mathbb{P}_x(\tau_{B(x,\delta/2)}=0)=0$, we can take s>0 such that

$$\mathbb{P}_x(\tau_{B(x,\delta/2)} \le s) < \epsilon. \tag{4.2}$$

Fix this s > 0. Note that

$$\begin{split} & \mathbb{P}_x(\tau_{B(z,\delta)} \leq \tau_D) \\ \leq & \mathbb{P}_x(\tau_{B(x,\delta/2)} \leq s \text{ or } \tau_D > s) \\ \leq & \mathbb{P}_x(\tau_{B(x,\delta/2)} \leq s) + \mathbb{P}_x(\tau_D > s). \end{split}$$

Since $z \in (\partial D)_r$ we have $\mathbb{P}_z(\tau_D > s) = 0$. The map $x \to \mathbb{P}_x(\tau_D > s)$ is upper-semi-continuous and we have

$$\lim \sup_{\tau \to z} \mathbb{P}_x(\tau_D > s) \le \mathbb{P}_z(\tau_D > s) = 0.$$

Hence, $\lim_{x\to z} \mathbb{P}_x(\tau_D > s) = 0$ or

$$\lim_{n \to \infty} \mathbb{P}_x(\tau_D \le s) = 1. \tag{4.3}$$

Take $\delta_2 = \delta_2(\epsilon)$ such that

$$\mathbb{P}_x(\tau_D > s) < \epsilon \tag{4.4}$$

for all $x \in \bar{D}$ with $|x - z| < \delta_2$.

Now let $\delta = \min(\delta_1, \delta_2)$. For any $x \in \bar{D}$ with $|x - z| < \delta$ we have from (4.2) and (4.4)

$$\mathbb{E}_{x}[\tau_{D} < \infty, |f(W_{\tau_{D}}) - f(z)|]$$

$$\leq \epsilon + \mathbb{E}_{x}[\tau_{D} < \infty, |f(W_{\tau_{D}}) - f(z)|, \tau_{B(z,\delta)} \leq \tau_{D}]$$

$$\leq \epsilon + 2||f||_{\infty}\mathbb{P}_{x}(\tau_{B(z,r)} \leq \tau_{D})$$

$$\leq \epsilon + 2||f||_{\infty}\left(\mathbb{P}_{x}(\tau_{B(x,\delta/2)} \leq s) + \mathbb{P}_{x}(\tau_{D} > s)\right)$$

$$\leq \epsilon + 4\epsilon||f||_{\infty}.$$

Hence, we have

$$\lim_{x \to z, x \in \bar{D}} H_D f(x) = \lim_{x \to z, x \in \bar{D}} \mathbb{P}_x(\tau_D < \infty) \cdot f(z).$$

Finally, it follows from (4.3) we have
$$\lim_{x \to z, x \in \bar{D}} \mathbb{P}_x(\tau_D < \infty) = 1$$
.

It is well-known that for Lipschitz domain D, all boundary points are regular for Brownian motions. Hence, we have the following theorem.

Theorem 4.0.3. Let $D \subset \mathbb{R}^d$ be a bounded Lipchitz domain and f is continuous on ∂D . Then, there exists a unique solution to the following Dirichlet problem

$$\begin{cases} \Delta u(x) = 0, & x \in D, \\ u(z) = f(z), & z \in \partial D. \end{cases}$$

Furthermore, u is given by

$$u(x) = \mathbb{E}_x[f(W_{\tau_D})].$$

Part IV

Stochastic Integrals with respect to Brownian Motions

Stochastic Integral with respect to Brownian Motions

In this chapter, we will define the stochastic integral (Itô integral) $\mathcal{I}(f) = \int_0^T f(t,\omega)dW_t$. Note that $\mathbb{E}[e^{i\theta W_t}] = e^{-t|\theta|^2}/2$ and this shows that W_t and $t^{1/2}W_1$ has the same distribution. This means that locally W_t moves as fast as \sqrt{t} and W_t cannot be of bounded variation as $\sum \frac{1}{\sqrt{n}} = \infty$. Hence, the Lebesgue-Stieltjes integral does not work as the sample $t \to W_t$ is not of bounded variation. We will overcome this by defining the stochastic integral as an element in $L^2(\mathbb{P})$.

There are a few steps to achieve this:

- 1. Define $\mathcal{I}(f)$ when f is elementary.
- 2. Use the Itô's isometry $\mathbb{E}[\mathcal{I}(f)^2] = \mathbb{E}[\int_0^T f(t,\omega)^2 dt]$ to extend $\mathcal{I}(f)$ for $f \in L^2((0,T)\otimes \mathbb{P})$

Definition 5.0.1. Fix T > 0. We define V = V(T) be a collection of functions f such that

- (1) $(t,\omega) \to f(t,\omega)$ is $\mathcal{B} \otimes \mathcal{F}$ -measurable.
- (2) For each t > 0, $f(t, \omega) \in \mathcal{F}_t$ (\mathcal{F}_t -adapted).

(3)
$$\mathbb{E}[\int_0^T f(t,\omega)^2 dt] < \infty$$
.

Definition 5.0.2. A function ϕ is called elementary if it can be written as

$$\phi(t,\omega) = \sum_{j} e_j(\omega) 1_{[t_j,t_{j+1})}(t), \quad e_j \in \mathcal{F}_{t_j}.$$

For an elementary function ϕ we define $\mathcal{I}(\phi)$ as

$$\mathcal{I}(\phi) = \sum_{j} e_j \left(W_{t_{j+1} \wedge T} - W_{t_j \wedge T} \right) := \sum_{j} e_j \Delta W_{t_j}.$$

In order to proceed, we need to briefly introduce a conditional expectation and martingales.

Definition 5.0.3 (Conditional Expectations). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $X : \Omega \to \mathbb{R}^d$ be a random variable such that $\mathbb{E}[|X|] < \infty$. If $\mathcal{H} \subset \mathcal{F}$ is a σ -algebra, then the conditional expectation of X given \mathcal{H} , denoted by $\mathbb{E}[X|\mathcal{H}]$, is a random variable such that

- 1. $\mathbb{E}[X|\mathcal{H}]$ is \mathcal{H} -measurable.
- 2. $\mathbb{E}[X, A] = \mathbb{E}[\mathbb{E}[X|\mathcal{H}], A]$ for any $A \in \mathcal{H}$.

Conditional expectation exists and it is unique a.e. (any two are equal a.e.). Intuitively, the conditional expectation $\mathbb{E}[X|\mathcal{H}]$ is the best guess of X given information \mathcal{H} .

Properties of Conditional Expectations

- 1. $X \to \mathbb{E}[X|\mathcal{H}]$ is linear.
- 2. Let $\mathcal{H}_1 \subset \mathcal{H}_2$. Then, $\mathbb{E}[\mathbb{E}[X|\mathcal{H}_2]|\mathcal{H}_1] = \mathbb{E}[X|\mathcal{H}_1]$ (Towering property).
- 3. If $X \in \mathcal{H}$, then $\mathbb{E}[XY|\mathcal{H}] = X\mathbb{E}[Y|\mathcal{H}]$.
- 4. Convergence Theorems for Conditional Expectations
 - (a) Monotone Convergence Theorem If $0 \le X_n \le X$ and $X_n \uparrow X$, then $\mathbb{E}[X_n | \mathcal{H}] \uparrow \mathbb{E}[X | \mathcal{H}]$.
 - (b) Fatou Theorem Let $0 \leq X_n$. Then, $\mathbb{E}[\liminf_{n \to \infty} X_n | \mathcal{H}] \leq \liminf_{n \to \infty} \mathbb{E}[X_n | \mathcal{H}]$.
 - (c) Dominated Convergence Theorem Suppose that $X_n \to X$ and $|X_n| \le Z$ with $\mathbb{E}[Z] < \infty$. Then, $\lim_{n \to \infty} \mathbb{E}[X_n | \mathcal{H}] = \mathbb{E}[X | \mathcal{H}]$.
- 5. Jensen's Inequality for Conditional Expectation Let ϕ be convex and $\mathbb{E}[|X|], \mathbb{E}[|\phi(X)|] < \infty$. Then, $\phi(\mathbb{E}[X|\mathcal{H}]) \leq \mathbb{E}[\phi(X)|\mathcal{H}]$.

Definition 5.0.4 (Martingales). Let $\{\mathcal{F}_t\}$ be a filtration (collection of increasing σ -algebras). A stochastic process $X = \{X_t\}$ is called a martingale if

- 1. $\mathbb{E}[|X_t|] < \infty$ for each t > 0;
- 2. X_t is \mathcal{F}_t adapted (X_t is \mathcal{F}_t measurable);
- 3. for any $s < t \mathbb{E}[X_t | \mathcal{F}_s] = X_s$.

Proposition 5.0.5 (Itô Isometry). *Suppose that* ϕ *is bounded and elementary. Then, we have*

$$\mathbb{E}[\mathcal{I}(\phi)^2] = \mathbb{E}[\int_0^T \phi(t,\omega)^2 dt].$$

Proof. Note that

$$\phi(t,\omega)^2 = \sum_j e_j(\omega)^2 \mathbf{1}_{[t_j,t_{j+1})}(t) \text{ and } \mathbb{E}[\int_0^T \phi(t,\omega)^2 dt] = \sum_j \mathbb{E}[e_j^2](t_{j+1} \wedge T - t_j \wedge T).$$

Also, we have

$$\mathcal{I}(\phi)^2 = \left(\sum_j e_j \Delta W_{t_j}\right)^2 = \sum_j e_j^2 \Delta W_{t_j}^2 + \sum_{j \neq k} e_j e_k \Delta W_{t_j} \Delta W_{t_k}.$$

Hence, the proof will be completed if one can show that

$$\mathbb{E}[e_j e_k \Delta W_{t_j} \Delta W_{t_k}] = 0, \quad j \neq k,$$

and

$$\mathbb{E}[e_j^2 \Delta W_{t_j}^2] = \mathbb{E}[e_j^2](t_{j+1} \wedge T - t_j \wedge T),$$

Using the conditional expectation argument we have for j < k

$$\mathbb{E}[e_{j}e_{k}\Delta W_{t_{j}}\Delta W_{t_{k}}]$$

$$=\mathbb{E}\left[\mathbb{E}[e_{j}e_{k}\Delta W_{t_{j}}\Delta W_{t_{k}}|\mathcal{F}_{t_{j}}]\right]$$

$$=\mathbb{E}\left[e_{j}e_{k}\Delta W_{t_{j}}\mathbb{E}[\Delta W_{t_{k}}|\mathcal{F}_{t_{j}}]\right]$$

$$=0.$$

Similarly, we have

$$\begin{split} & \mathbb{E}[e_j^2 \Delta W_{t_j}^2] \\ = & \mathbb{E}[\mathbb{E}[e_j^2 \Delta W_{t_j}^2 | \mathcal{F}_{t_j}]] \\ = & \mathbb{E}[e_j^2 \mathbb{E}[\left(W_{t_{j+1} \wedge T} - W_{t_j \wedge T}\right)^2 | \mathcal{F}_{t_j}]] \\ = & \mathbb{E}[e_j^2](t_{j+1} \wedge T - t_j \wedge T). \end{split}$$

Now, we are ready to define the Itô integral $\mathcal{I}(f)$ for $f \in V(T)$.

Theorem 5.0.6. For $f \in V(T)$, one can define

$$I(f) = \int_0^T f(t, \omega) dW_t$$

as L^2 -limit of $\mathcal{I}(\phi_n)$, where $\mathbb{E}[\int_0^T (f(t,\omega) - \phi_n(t,\omega))^2] \to 0$. The Itô integral $\mathcal{I}(f)$ satisfies

(1)
$$\int_0^T f(t,\omega)dW_t \in \mathcal{F}_T.$$

(2)
$$\mathbb{E}[\int_0^T f(t,\omega)dW_t] = 0$$
.

(3)
$$\mathbb{E}[(\int_0^T f(t,\omega)dW_t)^2] = \mathbb{E}[\int_0^T f(t,\omega)^2 dt].$$

(4)
$$\int_0^S f(t,\omega)dW_t + \int_S^T f(t,\omega)dW_t = \int_0^T f(t,\omega)dW_t.$$

(5)
$$\int_0^T af(t,\omega) + bg(t,\omega)dW_t = a\int_0^T f(t,\omega)dW_t + b\int_0^T g(t,\omega)dW_t.$$

Proof. One of standard ingredients we need is that the elementary functions are dense in V=V(T), which is a standard technique in measure theory. Once, this is established, for $f\in V$ we take a sequence of elementary functions $\{\phi_n\}$ converging to f. Note that

$$\mathbb{E}\left[\left(\int_0^T \phi_n(t,\omega)dW_t - \int_0^T \phi_m(t,\omega)dW_t\right)^2\right] = \mathbb{E}\left[\int_0^T (\phi_n(t,\omega) - \phi_m(t,\omega))^2 dt\right],$$

which shows that $\mathcal{I}(\phi_n)$ is Cauchy in $L^2(\mathbb{P})$, hence it converges in $L^2(\mathbb{P})$. Hence, we can define $\mathcal{I}(f)$ as the $L^2(\mathbb{P})$ limit. It is easy to observe that the limit is independent of the approximating sequence ϕ_n .

The rest are easy as they holds for elementary functions and the same must hold in the limit. \Box

Furthermore, one can choose the Itô integral so that $t \to \mathcal{I}(f)(t,\omega)$ is continuous a.s. More precisely, we have

Theorem 5.0.7. *For any* T > 0*, the map*

$$t \to \int_0^t f(s,\omega)dW_s$$

is continuous almost surely for $t \in [0, T]$.

Proof. Two main ingredient for the proof is the Doob's maximal inequality for martingales

$$\mathbb{P}(\sup_{t \le T} |M_t| \ge \lambda) \le \frac{1}{\lambda^p} \mathbb{E}[|M_T|^p], \quad p \in [1, \infty),$$

and Borel-Cantelli Lemma.

Let $f \in V$ and choose an approximating sequence $\{\phi_n\}$ of elementary functions converging to f in $L^2([0,T]\otimes \mathbb{P})$. Let

$$\mathcal{I}_n(t,\omega) = \int_0^t \phi_n(s,\omega) dW_s.$$

Then, it is easy to observe that $t \to \mathcal{I}_n(t,\omega)$ is a martingale with respect to \mathcal{F}_t : for $s \le t$

$$\mathbb{E}[\mathcal{I}_n(t,\omega)|\mathcal{F}_s] = \mathcal{I}_n(s,\omega)$$
 a.s.

By the Doob's maximal inequality, we have

$$\mathbb{P}\left(\sup_{t\leq T}|\mathcal{I}_n(t,\omega)-\mathcal{I}_m(t,\omega)|>\epsilon\right)\leq \frac{1}{\epsilon^2}\mathbb{E}[|\mathcal{I}_n(T,\omega)-\mathcal{I}_m(T,\omega)|^2].$$

The right-hand side converges to zero as $n,m\to\infty$ and one can choose a subsequence $\{n_k\}$ such that

$$\mathbb{P}\left(\sup_{t\leq T}\left|\mathcal{I}_{n_{k+1}}(t,\omega)-\mathcal{I}_{n_k}(t,\omega)\right|>2^{-k}\right)\leq 2^{-k}.$$

Hence, by Borel-Cantelli Lemma we have

$$\mathbb{P}\left(\limsup_{k} \sup_{t < T} \left| \mathcal{I}_{n_{k+1}}(t, \omega) - \mathcal{I}_{n_k}(t, \omega) \right| > 2^{-k} \right) = 0,$$

and there exists $\Omega^{'}\subset\Omega$ with $\mathbb{P}(\Omega^{'})=1$ such that for each $\omega\in\Omega^{'}$ there exists $k_1=k_1(\omega)$ such that for all $k\geq k_1$ we have

$$\sup_{t \le T} \left| \mathcal{I}_{n_{k+1}}(t, \omega) - \mathcal{I}_{n_k}(t, \omega) \right| \le 2^{-k}.$$

Hence, $\mathcal{I}_{n_k}(t,\omega)$ converges uniformly for all $t\leq T$ and the limit is continuous. Since L^2 -limit is unique a.s., this establishes the claim.

5.1 Exercises

- (1) The purpose of this exercise is to justify the approximation argument in the proof of Theorem 5.0.6.
 - (a) Let $g \in V$ be bounded and $g(\cdot, \omega)$ is continuous for each ω . Then there exist elementary functions ϕ_n such that

$$\mathbb{E}[\int_0^T (g-\phi_n)^2 dt] \to 0 \text{ as } n \to \infty.$$

Solution. Let $\phi_n(t,\omega) = \sum_{j=1}^n g(t_j^{(n)},\omega) \cdot 1_{[t_j^{(n)},t_{j+1}^{(n)})}$, where $t_j^{(n)} = \frac{Tj}{n}$. Since $\cdot \to g(\cdot,\omega)$ is continuous, $\phi_n(t,\omega) \to g(t,\omega)$ as $n \to \infty$ and the claim follows from the bounded convergence theorem.

(b) Let $h\in V$ be bounded. Then there exist bounded functions $g_n\in V$ such that $\cdot\to g_n(\cdot,\omega)$ is continuous and

$$\mathbb{E}[\int_0^T (h-g_n)^2 dt] \to 0 \text{ as } n \to \infty.$$

Solution. Let $g_n = \psi_n \star h$, where ψ_n is an approximation to the identity. Then, g_n is smooth in t and $\int_0^T (g_n(s,\omega) - h(s,\omega))^2 ds \to 0$. Now the claim follows from the bounded convergence theorem.

(c) Let $f \in V$. Then there exists a sequence $h_n \in V$ such that h_n is bounded and

$$\mathbb{E}[\int_0^T (f-h_n)^2 dt] \to 0 \text{ as } n \to \infty.$$

Solution. Let $h_n = f \cdot 1_{\{|f| \le n\}}$.

Itô Theorem

In this section, we prove the celebrated Itô Formula.

Definition 6.0.1. We say $X = \{X\}_t$ is a Itô process if it can be written as

$$X_t = X_0 + \int_0^t u(s, \omega)ds + \int_0^t v(s, \omega)dW_s,$$

where $\mathbb{P}\left(\int_0^t |u(s,\omega)| \, ds < \infty \text{ for all } t \geq 0\right) = \mathbb{P}\left(\int_0^t |v(s,\omega)|^2 \, ds < \infty \text{ for all } t \geq 0\right) = 1.$

We will write it as

$$dX_t = udt + vdW_t$$
.

Let $g = g(t, x) \in C^2([0, \infty) \times \mathbb{R})$ and $Y_t = g(t, X_t)$. Here is the statement for the main theorem.

Theorem 6.0.2. Let X be an Itô process given by $dX_t = udt + vdW_t$ and $Y_t = g(t, X_t)$ for $g \in C^2$. Then, we have

$$dY_t = \frac{\partial g}{\partial t}(t, X_t)dt + \frac{\partial g}{\partial x}(t, X_t)dX_t + \frac{1}{2}\frac{\partial^2 g}{\partial x^2}(t, X_t) \cdot (dX_t)^2,$$

where $(dX_t)^2$ is computed according to the rules

$$dt \cdot dt = dt \cdot dW_t = 0, \quad dW_t \cdot dW_t = dt.$$

Before we proceed any further, we illustrate some examples that use the Itô Theorem.

Examples 6.0.3. (1)
$$\int_0^t W_s dW_s = \frac{1}{2}W_t^2 - \frac{t}{2}$$
.

Let $X_t = W_t$ and $Y_t = f(X_t) := \frac{1}{2}W_t^2$. Then, by the Itô Theorem

$$dY_t = \frac{df}{dx}(Y_t)dX_t + \frac{1}{2}\frac{d^2f}{dx^2}(Y_t)(dX_t)^2 = W_t dW_t + \frac{1}{2}dt,$$

or

$$Y_t - Y_0 = \int_0^t W_s dW_s + \int_0^t \frac{1}{2} ds = \int_0^t W_s dW_s + \frac{t}{2}.$$

Hence,

$$\int_0^t W_s dW_s = \frac{1}{2} W_t^2 - \frac{t}{2}.$$

(2)
$$\int_0^t s dW_s = tW_t - \int_0^t W_s ds$$
.

Let $X_t = W_t$ and $Y_t = f(t, X_t) := tW_t$. Then, by the Itô Theorem

$$dY_t = \frac{\partial f}{\partial t}(t, X_t)dt + \frac{\partial f}{\partial x}(t, X_t)dX_t + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}(dX_t)^2 = W_t dt + t dW_t,$$

or

$$tW_t - 0W_0 = \int_0^t W_s ds + \int_0^t s dW_s \to \int_0^t s dW_s = tW_t - \int_0^t W_s ds.$$

We define a quadratic variation process of W by

$$\langle W, W \rangle(t) := \lim_{\Delta t_k \to 0} \left| W_{t_{k+1}} - W_{t_k} \right|^2,$$

where the convergence is convergence in probability. Recall that $\Delta W_{t_k} = W_{t_{k+1}} - W_{t_k}$.

Lemma 6.0.4. Let $0 \le t_1 < t_2 < \cdots t_n \le t$ be a partition of time interval [0, t]. Then we have

$$\mathbb{E}\left[\left(\sum_{k}(\Delta W_{t_k})^2 - t\right)^2\right] = 2\sum_{k}(\Delta t_k)^2.$$

Hence,

$$\langle W, W \rangle(t) \to t \text{ in } L^2(\Omega).$$

Proof. First note that

$$\sum_{k} (\Delta W_{t_k})^2 - t = \sum_{k} \left((\Delta W_{t_k})^2 - \Delta t_k \right).$$

Hence,

$$\left(\sum_{k} (\Delta W_{t_k})^2 - t\right)^2 = \left(\sum_{k} \left((\Delta W_{t_k})^2 - \Delta t_k\right)\right)^2$$

$$= \sum_{k} \left((\Delta W_{t_k})^2 - \Delta t_k\right)^2 + 2\sum_{k < j} ((\Delta W_{t_k})^2 - \Delta t_k)((\Delta W_{t_j})^2 - \Delta t_j)$$

$$= \sum_{k} \left[(\Delta W_{t_k})^4 - 2\Delta t_k(\Delta W_{t_k})^2 + (\Delta t_k)^2\right] + 2\sum_{k < j} ((\Delta W_{t_k})^2 - \Delta t_k)((\Delta W_{t_j})^2 - \Delta t_j).$$

Hence it follows from independence of increments and facts that $\mathbb{E}[W_t^2] = t$ and $\mathbb{E}[W_t^4] = 3t^2$

$$\mathbb{E}\left[(\Delta W_{t_k})^4 - 2\Delta t_k (\Delta W_{t_k})^2 + (\Delta t_k)^2 \right] = 3(\Delta t_k)^2 - 2(\Delta t_k)^2 + (\Delta t_k)^2 = 2(\Delta t_k)^2$$

For k < j, it follows from a conditioning argument

$$\mathbb{E}[((\Delta W_{t_k})^2 - \Delta t_k)((\Delta W_{t_j})^2 - \Delta t_j)]$$

$$= \mathbb{E}\left[\mathbb{E}[((\Delta W_{t_k})^2 - \Delta t_k)((\Delta W_{t_j})^2 - \Delta t_j)|\mathcal{F}_{t_j}]\right]$$

$$= \mathbb{E}\left[((\Delta W_{t_k})^2 - \Delta t_k)\mathbb{E}[((\Delta W_{t_j})^2 - \Delta t_j)|\mathcal{F}_{t_j}]\right]$$

$$= 0.$$

This establishes the claim.

Proof of Theorem 6.0.2 By an approximation argument, we may assume all functions are bounded. The proof uses the Taylor theorem up to the second order term and a crucial ingredient of the theorem is the quadratic variation of Brownian motions. Note that

$$Y_t - Y_0 = \sum_j \Delta Y_{t_j} = \sum_j \Delta g(t_j, X_{t_j})$$

$$= \sum_j \frac{\partial g}{\partial t}(t_j, X_{t_j}) \Delta t_j + \sum_j \frac{\partial g}{\partial x}(t_j, X_{t_j}) \Delta X_{t_j}$$

$$+ \frac{1}{2} \sum_j \frac{\partial^2 g}{\partial t^2}(t_j, X_{t_j}) (\Delta t_j)^2 + \sum_j \frac{\partial^2 g}{\partial t \partial x}(t_j, X_{t_j}) \Delta t_j \Delta X_{t_j} + \frac{1}{2} \sum_j \frac{\partial^2 g}{\partial x^2}(t_j, X_{t_j}) (\Delta X_{t_j})^2 + \sum_j R_j,$$

where $R_j = o(|\Delta t_j|^2 + |\Delta X_j|^2)$. It is easy to observe that

$$\sum_{j} \frac{\partial g}{\partial t}(t_{j}, X_{t_{j}}) \Delta t_{j} \to \int_{0}^{t} \frac{\partial g}{\partial t}(s, X_{s}) ds, \quad \sum_{j} \frac{\partial g}{\partial x}(t_{j}, X_{t_{j}}) \Delta X_{t_{j}} \to \int_{0}^{t} \frac{\partial g}{\partial x}(s, X_{s}) dX_{s},$$

and

$$\sum_{j} \frac{\partial^2 g}{\partial t^2}(t_j, X_{t_j})(\Delta t_j)^2 \text{ and } \sum_{j} \frac{\partial^2 g}{\partial t \partial x}(t_j, X_{t_j})\Delta t_j \Delta X_{t_j} \to 0.$$

Note that

$$\sum_{j} \frac{\partial^{2} g}{\partial x^{2}} (\Delta X_{t_{j}})^{2}$$

$$= \sum_{j} \frac{\partial^{2} g}{\partial x^{2}} u(t_{j}, \omega)^{2} (\Delta t_{j})^{2} + 2 \sum_{j} \frac{\partial^{2} g}{\partial x^{2}} u(t_{j}, \omega) v(t_{j}, \omega) \Delta t_{j} \Delta W_{t_{j}} + \sum_{j} \frac{\partial^{2} g}{\partial x^{2}} v(t_{j}, \omega)^{2} (\Delta W_{t_{j}})^{2}$$

The first two expressions converges to 0 and by Lemma 6.0.4 we have

$$\mathbb{E}\left[\left|\sum_{j} \frac{\partial^{2} g}{\partial x^{2}} v(t_{j}, \omega)^{2} (\Delta W_{t_{j}})^{2} - \sum_{j} \frac{\partial^{2} g}{\partial x^{2}} v(t_{j}, \omega)^{2} \Delta t_{j}\right|^{2}\right] \to 0$$

and this shows that

$$\sum_{j} \frac{\partial^{2} g}{\partial x^{2}} v(t_{j}, \omega)^{2} (\Delta W_{t_{j}})^{2} \to \int_{0}^{t} \frac{\partial^{2} g}{\partial x^{2}} v(s, \omega)^{2} ds \text{ in } L^{2}(\mathbb{P}).$$

Finally, we can observe that $R_j o 0$ by a similar argument and this establishes the claim. \Box

Part V Stochastic Differential Equations

Chapter 7

Examples-Geometric Brownian Motions and OU Processes

In this chapter, we explain two examples that are solutions of SDEs; Geometric Brownian motions and Ornstein-Uhlenbeck Processes.

Examples 7.0.1 (Geometric Brownian Motions). Consider a population growth model and let $N = \{N_t\}$, where N_t is a number of certain population. Assume that it satisfies the following equation:

$$dN_t = aN_t dt + \alpha N_t dW_t.$$

(1) Find N_t . Note that $\frac{dN_t}{N_t} = adt + \alpha dW_t$ and we have

$$\int_0^t \frac{dN_s}{N_s} = at + \alpha W_t.$$

We will find $\frac{dN_t}{N_t}$ using the Itô formula. Let $f(x) = \ln x$ and by the Itô formula we have

$$d(\ln N_t) = \frac{dN_t}{N_t} + \frac{1}{2}(-\frac{1}{N_t^2})(dN_t)^2 = \frac{dN_t}{N_t} - \frac{1}{2N_t^2}\alpha^2 N_t^2 = \frac{dN_t}{N_t} - \frac{1}{2}\alpha^2 dt.$$

Hence, $d(\ln N_t) = \frac{dN_t}{N_t} - \frac{1}{2}\alpha^2 dt$ and we have

$$\int_0^t \frac{dN_s}{N_s} = \int_0^t d(\ln N_s) + \frac{1}{2}\alpha^2 ds = \ln \frac{N_t}{N_0} + \frac{1}{2}\alpha^2 t = at + \alpha W_t,$$

and we have

$$N_t = N_0 \exp\left(\left(a - \frac{1}{2}\alpha^2\right)t + \alpha W_t\right).$$

(2) Assume that the initial population N_0 and $W = \{W_t\}$ are independent. Show that

$$\mathbb{E}[N_t] = \mathbb{E}[N_0]e^{at}.$$

That is, the expected population is the same as the case without the noise term. By the independence we have

$$\mathbb{E}[N_t] = \mathbb{E}[N_0]\mathbb{E}[\exp\left((a - \frac{1}{2}\alpha^2)t + \alpha W_t\right)].$$

We focus on finding $\mathbb{E}[e^{\alpha W_t}]$. Let $Y_t = e^{\alpha W_t}$. Then, by the Itô formula, we have

$$dY_t = \alpha Y_t dW_t + \frac{1}{2}\alpha^2 Y_t dt,$$

and

$$Y_t = \int_0^t \alpha Y_s dW_s + \frac{1}{2} \alpha^2 \int_0^t Y_s ds.$$

By taking an expectation and using the fact $\mathbb{E}[\int_0^t \alpha Y_s dW_s] = 0$ as it is a martingale, we have

$$\mathbb{E}[Y_t] = \frac{\alpha^2}{2} \int_0^t \mathbb{E}[Y_s] ds,$$

and

$$\frac{d}{dt}\mathbb{E}[Y_t] = \frac{\alpha^2}{2}\mathbb{E}[Y_t].$$

Hence, we have $\mathbb{E}[Y_t] = e^{\frac{1}{2}\alpha^2t}$.

Examples 7.0.2 (Ornstein-Uhlenbeck Processes). Consider the following Ornstein-Uhlenbeck equation (or Langevin equation), which models Brownian particles under the influence of friction

$$dX_t = \mu X_t dt + \sigma dW_t, \quad \mu, \sigma \in \mathbb{R}.$$

(1) Using the variation of parameter $Y_t = e^{-\mu t}X_t$, find the solution X_t .

By the stochastic chain rule $d(A_tB_t) = d(A_t)B_t + A_td(B_t) + dA_t \cdot dB_t$, we have

$$dY_t = -\mu e^{-\mu t} X_t dt + e^{-\mu t} dX_t = e^{-\mu t} \sigma dW_t.$$

Hence, we have $Y_t - Y_0 = \int_0^t e^{-\mu s} \sigma dW_s$ and this gives

$$X_t = e^{\mu t} X_0 + \sigma \int_0^t e^{\mu(t-s)} dW_s.$$

(2) Find $\mathbb{E}[X_t]$ and $Cov(X_t, X_s)$.

Clearly, $\mathbb{E}[X_t] = e^{\mu t} \mathbb{E}[X_0]$ and by the Itô isometry we have

$$\begin{split} & Cov(X_t, X_s) = \mathbb{E}\left[(X_t - \mathbb{E}[X_t])(X_s - \mathbb{E}[X_s])\right] \\ = & \mathbb{E}\left[\sigma \int_0^t e^{\mu(t-u)} dW_u \cdot \sigma \int_0^s e^{\mu(s-u)} dW_u\right] \\ = & \sigma^2 e^{\mu(t+s)} \mathbb{E}\left[\int_0^\infty \mathbf{1}_{(0,t)}(u) e^{-\mu u} dW_u \int_0^\infty \mathbf{1}_{(0,s)}(u) e^{-\mu u} dW_u\right] \\ = & \sigma^2 e^{\mu(t+s)} \int_0^{t \wedge s} e^{-2\mu u} du = \sigma^2 e^{\mu(t+s)} \frac{1 - e^{-2\mu(t \wedge s)}}{2\mu} = \frac{\sigma^2}{2\mu} (e^{\mu(t+s)} - e^{\mu|t-s|}). \end{split}$$

Chapter 8

Existence and Uniqueness Theorem of SDE

In this note, we prove the uniqueness and existence of the stochastic differential equations (SDE).

Theorem 8.0.1. Let T>0 and $b(\cdot,\cdot):[0,T]\times\mathbb{R}^d\to\mathbb{R}^d$, $\sigma(\cdot,\cdot):[0,T]\times\mathbb{R}^d\to\mathbb{R}^{d\times m}$ be measurable functions satisfying

$$|b(t,x)| + |\sigma(t,x)| \le C(1+|x|),$$

and

$$|b(t,x) - b(t,y)| + |\sigma(t,x) - \sigma(t,y)| \le D|x - y|$$

for some constants C and D. Let Z be a random variable which is independent of the σ -algebras generated by B and such that

$$\mathbb{E}[|Z|^2] < \infty.$$

Then the stochastic differential equation

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t, \quad 0 \le t \le T, X_0 = Z$$

has a unique t-continuous solution such that X is adapted to the filtration generated by Z and B and $\mathbb{E}[\int_0^T |X_t|^2 dt] < \infty$.

Remark 8.0.2. The matrix form of the SDE $dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t$ is given by

$$\begin{pmatrix} dX_t^{(1)} \\ \vdots \\ dX_t^{(d)} \end{pmatrix} = \begin{pmatrix} b^{(1)}(t, X_t) \\ \vdots \\ b^{(d)}(t, X_t) \end{pmatrix} dt + \begin{pmatrix} \sigma_{11}(t, X_t) & \cdots & \sigma_{1m}(t, X_t) \\ \vdots & \ddots & \vdots \\ \sigma_{d1}(t, X_t) & \cdots & \sigma_{dm}(t, X_t) \end{pmatrix} \begin{pmatrix} dB_t^{(1)} \\ \vdots \\ dB_t^{(m)} \end{pmatrix}.$$

Alternatively, we can write the SDE as

$$X_t^{(j)} - X_0^{(j)} = \int_0^t b^{(j)}(s, X_s) ds + \sum_{k=1}^m \int_0^t \sigma_{jk}(s, X_s) dB_s^{(k)}, \quad j \in \{1, \dots, d\}.$$

We need the following Gronwall's Lemma for the proof of Theorem 8.0.1.

Lemma 8.0.3. Let $u(t), \kappa(t) \geq 0$ be such that $u(t) \leq A + \int_0^t v(a)\kappa(a)da$ for $0 \leq t \leq T$ for some constant A. Then,

$$u(t) \le A \exp(\int_0^t \kappa(a) da)$$
 for $0 \le t \le T$.

Proof. Note that we have $\frac{u(s)\kappa(s)}{A+\int_0^s\kappa(a)u(a)da}\leq \kappa(s)$ for $0\leq s\leq t$. This implies $\frac{d}{ds}\ln\left(A+\int_0^s\kappa(a)u(a)da\right)$ $\kappa(s)$. By integrating from 0 to t, we have $\ln(A+\int_0^t\kappa(a)u(a))da-\ln A\leq \int_0^t\kappa(a)da$ and this implies

$$A + \int_0^t \kappa(a)u(a)da \le A \exp(\int_0^t \kappa(a)da).$$

Finally,

$$u(t) \le A + \int_0^t \kappa(a)u(a)da \le A \exp(\int_0^t \kappa(a)da).$$

Proof of Theorem 8.0.1 Uniqueness The main tool to prove the uniqueness is the Gronwall's lemma. Let X_t and \tilde{X}_t be two solutions of the following SDEs

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t, X_0 = Y_0, t \in [0, T],$$

and

$$d\tilde{X}_t = b(t, \tilde{X}_t)dt + \sigma(t, \tilde{X}_t)dB_t, \tilde{X}_0 = \tilde{Y}_0, t \in [0, T],$$

Using a simple inequality $(x+y+z)^2 \leq 3(x^2+y^2+z^2)$ we have

$$\begin{split} & \mathbb{E}[|X_t - \tilde{X}_t|^2] \\ = & \mathbb{E}\left[\left((Y_0 - \tilde{Y}_0) + \int_0^t (b(s, X_s) - b(s, \tilde{X}_s))ds + \int_0^t (\sigma(s, X_s) - \sigma(s, \tilde{X}_s))dB_s)^2\right] \\ \leq & 3\left(\mathbb{E}[(Y_0 - \tilde{Y}_0)^2] + (\int_0^t (b(s, X_s) - b(s, \tilde{X}_s))ds)^2 + (\int_0^t (\sigma(s, X_s) - \sigma(s, \tilde{X}_s))dB_s)^2\right). \end{split}$$

By Cauchy-Schwarz inequality and the condition on b, we have

$$(\int_0^t (b(s, X_s) - b(s, \tilde{X}_s))ds)^2$$

$$\leq \int_0^t 1ds \cdot \int_0^t (b(s, X_s) - b(s, \tilde{X}_s))^2 ds$$

$$\leq tD^2 \int_0^t |X_s - \tilde{X}_s|^2 ds.$$

By Itô isometry and the condition on b, we have

$$\mathbb{E}\left[\left(\int_0^t (\sigma(s, X_s) - \sigma(s, \tilde{X}_s))dB_s\right)^2\right]$$

$$= \mathbb{E}\left[\int_0^t (\sigma(s, X_s) - \sigma(s, \tilde{X}_s))^2 ds\right]$$

$$\leq D^2 \mathbb{E}\left[\int_0^t |X_s - \tilde{X}_s|^2\right].$$

Hence, we conclude that

$$\mathbb{E}[|X_t - \tilde{X}_t|^2] \le 3\mathbb{E}[(Y_0 - \tilde{Y}_0)^2] + 3D^2(1+T)\mathbb{E}[\int_0^t |X_s - \tilde{X}_s|^2].$$

By Gronwall's lemma we conclude that

$$\mathbb{E}[|X_t - \tilde{X}_t|^2] \le 3\mathbb{E}[(Y_0 - \tilde{Y}_0)^2] \exp(3D^2(1+T)t), \quad t \in [0, T].$$

As $Y_0 = \tilde{Y}_0 = Z$, we conclude that $\mathbb{E}[|X_t - \tilde{X}_t|^2] = 0$ for all $t \in [0,T]$ and $X_t = \tilde{X}_t$ a.e. for all $t \in [0,T]$. Hence, there is $\Omega' \subset \Omega$ with $\mathbb{P}(\Omega') = 1$ such that

$$X_t(\omega) = \tilde{X}_t(\omega)$$
 for all $t \in [0,T] \cap \mathbb{Q}$ and $\omega \in \Omega'$.

From the continuity, we conclude that

$$X_t(\omega) = \tilde{X}_t(\omega)$$
 for all $t \in [0,T]$ and $\omega \in \Omega'$.

Existence and Continuity

We define $Y_t^{(n)}$ inductively as

$$Y_t^{(0)} = X_0,$$

and

$$Y_t^{(n+1)} = X_0 + \int_0^t b(s, Y_s^{(n)}) ds + \int_0^t \sigma(s, Y_s^{(n)}) dB_s.$$

By a similar calculation as above, we have

$$\mathbb{E}[|Y_t^{(n+1)} - Y_t^{(n)}|^2] \le 3D^2(1+t)\mathbb{E}\left[\int_0^t |Y_s^{(n)} - Y_s^{(n-1)}|^2 ds\right] \tag{8.1}$$

We also have

$$\mathbb{E}[|Y_{t}^{(1)} - Y_{t}^{(0)}|^{2}]$$

$$= \mathbb{E}\left[\left(\int_{0}^{t} b(s, X_{0})ds + \int_{0}^{t} \sigma(s, X_{0})dB_{s}\right)^{2}\right]$$

$$\leq 2\mathbb{E}\left[\left(\int_{0}^{t} b(s, X_{0})ds\right)^{2} + \left(\int_{0}^{t} \sigma(s, X_{0})dB_{s}\right)^{2}\right]$$

$$\leq 2t\mathbb{E}\left[\int_{0}^{t} b(s, X_{0})^{2}ds\right] + 2\mathbb{E}\left[\int_{0}^{t} \sigma(s, X_{0})^{2}ds\right]$$

$$\leq 2t(1 + t)C^{2}\mathbb{E}\left[(1 + X_{0})^{2}\right]. \tag{8.2}$$

From (8.1) and (8.2) we conclude that

$$\mathbb{E}[|Y_t^{(n+1)} - Y_t^{(n)}|^2] \le \frac{c^{n+1}t^{n+1}}{(n+1)!}.$$

This shows that $Y_t^{(n)}$ is uniformly Caychy in $L^2(\Omega)$ and it converges uniformly to X_t , $t \in [0,T]$. As all $Y_t^{(n)}$ are continuous, this shows that X_t is continuous as a uniform limit of continuous functions.

Finally, note that by Cauchy-Schwarz inequality we have

$$\begin{split} & \mathbb{E}\left[\left(\int_0^t b(s,Y_s^{(n)}) - b(s,X_s)ds\right)^2\right] \\ \leq & \mathbb{E}[t\int_0^t (b(s,Y_s^{(n)}) - b(s,X_s))^2ds] \\ \leq & tD^2\mathbb{E}[\int_0^t |Y_s^{(n)} - X_s|^2ds] \to 0 \text{ as } n \to \infty. \end{split}$$

by a uniform convergence theorem. By a similar argument with Itô isometry, we also have

$$\mathbb{E}\left[\left(\int_0^t \sigma(s, Y_s^{(n)}) - \sigma(s, X_s) dB_s\right)^2\right] \to 0 \text{ as } n \to \infty.$$

Hence, by taking a limit to

$$Y_t^{(n+1)} = X_0 + \int_0^t b(s, Y_s^{(n)}) ds + \int_0^t \sigma(s, Y_s^{(n)}) dB_s,$$

we conclude that X_t satisfies the SDE.

Part VI Bibliography

Bibliography

- [1] K. L. Chung and Z. Zhao. From Brownian motion to Schrödinger's equation. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 312. Springer-Verlag, Berlin, 1995. xii+287 pp. ISBN: 3-540-57030-6.
- [2] J. Le Gall: Brownian motion, Martingales, and Stochastic Calculus. Graduate Texts in Mathematics, 274. Springer, [Cham], 2016. xiii+273 pp. ISBN: 978-3-319-31088-6; 978-3-319-31089-3.
- [3] V. N. Kolokoltsov. *Markov processes*, *semigroups and generators*. De Gruyter Studies in Mathematics, 38. Walter de Gruyter & Co., Berlin, 2011. xviii+430 pp. ISBN: 978-3-11-025010-7.
- [4] David Williams. *Probability with Martingales*. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991. xvi+251 pp. ISBN: 0-521-40455-X; 0-521-40605-6.

Hyunchul Park

Department of Mathematics, State University of New York at New Paltz, NY 12561, USA E-mail: parkh@newpaltz.edu